Thesis Proposal Bibliography
[1] L. Alboul, G. Echeverria, and M. Rodrigues. Discrete curvatures and gauss maps for polyhedral surfaces. In European Workshop on Computational Geometry (EWCG), pages 6972, Eindhoven, the Netherlands, 2005.
[2] R. K. E. Andersson and B. E. J. Dahlberg. Interactive techniques for visual design. In Topics in surface modeling, pages 95-113. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1992.
[3] Autodiff: Automatic differention tools. http://www.autodiff.org/Tools/index.php
[4] C. Bajaj and G. Xu. Adaptive fairing of surface meshes by geometric diffusion. In IV 01: Proceedings of the Fifth International Conference on Information Visualisation, page 731, Washington, DC, USA, 2001. IEEE Computer Society.
[5] M. I. G. Bloor, M. J. Wilson, and H. Hagen. The smoothing properties of variational schemes for surface design . Computer Aided Geometric Design, 12(4):381394, 1995.
[6] A. I. Bobenko and P. Schr¨oder. Discrete willmore flow. In Eurographics Sympossium on Geometry Processing, pages 101110, 2005.
[7] V. Borrelli, F. Cazals, and J.-M. Morvan. On the angular defect of triangulations and the pointwise approximation of curvatures . Comput. Aided Geom. Des., 20(6):319341, 2003.
[8] T. B¨ulow. Spherical diffusion for 3d surface smoothing . IEEE Transactions on Pattern Analysis and Machine Intelligence, 26:16501654, December 2004.
[9] G. Celniker and D. Gossard. Deformable curve and surface finite-elements for free-form shape design . In SIGGRAPH 91: Proceedings of the 18th annual conference on Computer graphics and interactive techniques, pages 257266, New York, NY, USA, 1991. ACM Press.
[10] C.-Y. Chen, K.-Y. Cheng, and H.-Y. M. Liao. Fairing of polygon meshes via bayesian discriminant analysis . In WSCG: Int. Conf. in Central Europe on Comp. Graph., Vis. and Comp. Vis., pages 175182, 2004.
[11] I. Choi and K. Lee. Evaluation of surfaces for automobile body styling . In Computer Graphics International, pages 202, 1996.
[12] U. Clarenz, U. Diewald, and M. Rumpf. Anisotropic geometric diffusion in surface processing . In VIS 00: Proceedings of the conference on Visualization 00, pages 397405, Los Alamitos, CA, USA, 2000. IEEE Computer Society Press.
[13] U. Clarenz, M. Rumpf, and A. Telea. Fairing of point based surfaces . In Computer Graphics International, pages 600603, 2004.
[14] D. Cohen-Steiner and J.-M. Morvan. Restricted delaunay triangulations and normal cycles . Proc. 19th Annu. ACM Sympos. Comput. Geom., pages 237246, 2003.
[15] P. Cs΄akany and A. M. Wallace. Computation of local differential parameters on irregular meshes. In Proceedings of the 9th IMA Conference on the Mathematics of Surfaces, pages 1933, London, UK, 2000. Springer-Verlag.
[16] C. W. Dankwort and G. Poehl. A new aesthetic design workflow - results from the european project fiores . In P. Brunet, C. Hoffmann, and D. Roller, editors, CAD Tools and Algorithms for Product Design, pages 1630. Springer-Verlag,2000.
[17] M. Desbrun, M. Meyer, P. Schr¨oder, and A. H. Barr. Implicit fairing of irregular meshes using diffusion and curvature flow . SIGGRAPH Computer Graphics, 33(Annual Conference Series):317324, 1999.
[18] J. C. Dill. An application of color graphics to the display of surface curvature . SIGGRAPH Comput. Graph., 15(3):153161, 1981.
[19] N. Dyn, K. Hormann, S.-J. Kim, and D. Levin. Optimizing 3d triangulations using discrete curvature analysis . In Mathematical Methods for Curves and Surfaces: Oslo 2000, pages 135146, Nashville, TN, USA, 2001. Vanderbilt University.
[20] G. Farin. Curves and surfaces for CAGD: a practical guide. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.
[21] G. Farin and H. Hagen. A local twist estimator. In Topics in surface modeling, pages 7984. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1992.
[22] G. Farin and N. Sapidis. Curvature and the fairness of curves and surfaces . IEEE Comput. Graph. Appl., 9(2):5257, 1989.
[23] R. T. Farouki. Graphical methods for surface differential geometry. In Proceedings on Mathematics of surfaces II, pages 363385, New York, NY, USA, 1988.Clarendon Press.
[24] G. E. Fasshauer and L. L. Schumaker. Minimal energy surfaces using parametric splines . Comput. Aided Geom. Des., 13(1):4579, 1996.
[25] A. R. Forrest. On the rendering of surfaces . In SIGGRAPH 79: Proceedings of the 6th annual conference on Computer graphics and interactive techniques, pages 253259, New York, NY, USA, 1979. ACM Press.
[26] J. Goldfeather and V. Interrante. A novel cubic-order algorithm for approximating principal direction vectors . ACM Trans. Graph., 23(1):4563, 2004.
[27] J. Gravesen and M. Ungstrup. Constructing invariant fairness measures for surfaces . Adv. Comput. Math., 17(1-2):6788, 2002. Advances in geometrical algorithms and representations.
[28] G. Greiner. Variational design and fairing of spline surfaces . Comput. Graph. Forum, 13(3):143154, 1994.
[29] G. Greiner. Modeling of curves and surfaces based on optimization techniques. In H. Nowacki and P.D.Kaklis, editors, Creating Fair and Shape-Preserving Curves and Surfaces, pages 1127. BG Teubner, 1998.
[30] G. Greiner, J. Loos, and W. Wesselink. Surface modeling with data dependent energy functionals. Comput. Graph. Forum, 15:175186, 1996.
[31] N. Guid, C. Oblonsek, and B. Zalik. Surface interrogation methods . Computers & Graphics, 19(4):557574, 1995.
[32] H. Hagen. Variational principles in curve and surface design. In IMA Conference on the Mathematics of Surfaces, pages 169190, 1992.
[33] H. Hagen and S. Hahmann. Generalized focal surfaces: A new method for surface interrogation . In IEEE Visualization, pages 7076, 1992.
[34] H. Hagen, S. Hahmann, and G.-P. Bonneau. Variational surface design and surface interrogation . Comput. Graph. Forum, 12(3):447459, 1993.
[35] H. Hagen, S. Hahmann, and T. Schreiber. Visualization and computation of curvature behaviour of freeform curves and surfaces . Computer-Aided Design, 27(7):545552, 1995.
[36] H. Hagen, S. Hahmann, T. Schreiber, Y. Nakajima, B. Wordenweber, and P. Hollemann-Grundstedt. Surface interrogation algorithms . IEEE Computer Graphics and Applications, 12(5):5360, Sept. 1992.
[37] H. Hagen and A. Nawotki. Variational design and parameter optimized surface fitting. In Geometric Modelling, pages 121134, 1996.
[38] H. Hagen, T. Schreiber, and E. Gschwind. Methods for surface interrogation . In IEEE Visualization, pages 187193, 1990.
[39] S. Hahmann. Visualization techniques for surface analysis . In Data Visualization Techniques (Trends in Software, 6). John Wiley and Son Ltd, 1999.
[40] B. Hamann. Curvature approximation for triangulated surfaces. In Geometric modelling, pages 139153, London, UK, 1993. Springer-Verlag.
[41] M. Higashi, K. Kohji, and M. Hosaka. On formulation and display for visualizing features and evaluating quality of free-form surfaces. In EUROGRAPHICS 90, pages 299309, 1990.
[42] K. Hildebandt, K. Polthier, and M. Wardetzky. Smooth feature lines on surface meshes . In Eurographics Symposium on Geometry Processing: SGP05, pages 8590, 2005.
[43] S.-Y. Hong, C.-S. Hong, H.-C. Lee, and K. Park. Discrete local fairing of bspline surfaces . In ICCS 01: Proceedings of the International Conference on Computational Sciences-Part I, pages 693697, London, UK, 2001. Springer- Verlag.
[44] J. Hoschek. Detecting regions with undesirable curvature . Computer Aided Geometric Design, 1(2):183192, 1984.
[45] J. Hoschek. Smoothing of curves and surfaces . Computer Aided Geometric Design, 2(1-3):97105, 1985.
[46] L. Hsu, R. Kusner, and J. Sullivan. Minimizing the squared mean curvature integral for surfaces in space forms . Experiment. Math., 1(3):191207, 1992.
[47] A. Hubeli and M. Gross. Fairing of non-manifolds for visualization . In VIS 00: Proceedings of the conference on Visualization 00, pages 407414, Los Alamitos, CA, USA, 2000. IEEE Computer Society Press.
[48] F. Jin. Directional surface fairing of elongated shapes. In H. Nowacki and P.D.Kaklis, editors, Creating Fair and Shape-Preserving Curves and Surfaces, pages 164178. BG Teubner, 1998.
[49] T. R. Jones, F. Durand, and M. Desbrun. Non-iterative, feature-preserving mesh smoothing . ACM Trans. Graph., 22(3):943949, 2003.
[50] M. Kallay. Constrained optimization in surface design. In B. Falcidieno and T. Kunii, editors, Modelling in Computer Graphics, pages 8593. Springer, 1993.
[51] M. Kallay and B. Ravani. Optimal twist vectors as a tool for interpolating a network of curves with a minimum energy surface . Computer Aided Geometric Design, 7(6):465473, 1990.
[52] S. Karbacher, J. Babst, G. Husler, and X. Laboureux. Visualization and detection of small defects on car-bodies . In B. Girod, G. Greiner, H. Niemann, and H.-P. Seidel, editors, Vision, Modeling, and Visualization 1999, pages 18, August 1999.
[53] R. Klass. Correction of local surface irregularities using reflection lines. Computer-Aided Design, 12(2):7377, March 1980.
[54] L. Kobbelt. A variational approach to subdivision . Computer Aided Geometric Design, 13(8):743761, 1996.
[55] L. Kobbelt. Discrete fairing . In 7th IMA Conf. on the Mathematics of Surfaces, pages 101130, 1997.
[56] L. Kobbelt. Variational design with parametric meshes of arbitrary topology. In H. Nowacki and P.D.Kaklis, editors, Creating Fair and Shape-Preserving Curves and Surfaces, pages 189198. BG Teubner, 1998.
[57] L. Kobbelt. Discrete fairing and variational subdivision for freeform surface design . The Visual Computer, 16(3-4):142158, 2000.
[58] J. J. Koenderink and A. J. van Doorn. Surface shape and curvature scales. Image Vision Comput., 10(8):557564, 1992.
[59] A. Kolb, H. Pottmann, and H. P. Seidel. Surface reconstruction based upon minimum norm networks . In M. Daehlen, T. Lyche, and L. L. Schumaker, editors, Mathematical Methods for Curves and Surfaces, pages 293304. Vanderbilt University Press, Nashville, TN, 1995.
[60] G. Liden and A. A. Ball. Intersection techniques for assessing surface quality. In Proceedings of the 5th IMA Conference on the Mathematics of Surfaces, pages 191202, New York, NY, USA, 1994. Clarendon Press.
[61] T. Lilienblum, B. Michaelis, P. Albrecht, and R. Calow. Dent detection in car bodies. In ICPR, pages 47754778, 2000.
[62] X. Liu, H. Bao, Q. Peng, P.-A. Heng, and T.-T. Wong. Constrained fairing for meshes . Comput. Graph. Forum, 20(2):115123, 2001.
[63] J. Loos, G. Greiner, and H.-P. Seidel. Modeling of surfaces with fair reflection line pattern . In Shape Modeling International, pages 256, 1999.
[64] J.-L. Maltret and M. Daniel. Discrete curvatures and applications : a survey . Rapport de recherche LSIS.RR.2002.002, Laboratoire des Sciences de lInformation et des Syst`emes, 2002.
[65] D. S. Meek and D. J. Walton. On surface normal and gaussian curvature approximations given data sampled from a smooth surface . Comput. Aided Geom. Des., 17(6):521543, 2000.
[66] E. Mehlum and C. Tarrou. Invariant smoothness measures for surfaces. Adv. Comput. Math., 8(1-2):4963, 1998.
[67] M. Meyer, M. Desbrun, P. Schr¨oder, and A. H. Barr. Discrete differential geometry operators for triangulated 2-manifolds . In H.-C. Hege and K. Polthier, editors, Visualization and Mathematics III, pages 3557. Springer-Verlag, Heidelberg, 2003.
[68] H. P. Moreton. Simplified curve and surface interrogation via mathematical packages and graphics libraries and hardware . Computer-Aided Design, 27(7):523543, 1995.
[69] H. P. Moreton and C. H. S΄equin. Surface design with minimum energy networks . In Symposium on Solid Modeling and Applications, pages 291301, 1991.
[70] H. P. Moreton and C. H. S΄e;quin. Functional optimization for fair surface design . In SIGGRAPH 92: Proceedings of the 19th annual conference on Computer graphics and interactive techniques, pages 167176, New York, NY, USA, 1992. ACM Press.
[71] H. P. Moreton and C. H. S΄equin. Scale-invariant minimum-cost curves: Fair and robust design implements . Comput. Graph. Forum, 12(3):473484, 1993.
[72] F. Munchmeyer. On surface imperfections. In Proceedings on Mathematics of surfaces II, pages 459474, New York, NY, USA, 1988. Clarendon Press.
[73] A. Nawotki and H. Hagen. Physically based modeling. In H. Nowacki and P.D.Kaklis, editors, Creating Fair and Shape-Preserving Curves and Surfaces, pages 133139. BG Teubner, 1998.
[74] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations Research. Springer-Verlag, New York, NY, 1999.
[75] H. Nowacki and D. Reese. Design and fairing of ship surfaces. In Surfaces in Computer Aided Geometric Design, pages 121134. North-Holland Publishing Company, Amsterdam, 1983.
[76] H. Nowacki, G. Westgaard, and J. Heimann. Creation of fair surfaces based on higher order fairness measures with interpolation constraints. In H. Nowacki and P.D.Kaklis, editors, Creating Fair and Shape-Preserving Curves and Surfaces, pages 141161. BG Teubner, 1998.
[77] M. Ohsaki, T. Ogawa, and R. Tateishi. Shape optimization of curves and surfaces considering fairness metrics and elastic stiffness . Structural and Multi-disciplinary Optimization, 27(4):250258, June 2004.
[78] Y. Ohtake, A. G. Belyaev, and I. A. Bogaevski. Polyhedral surface smoothing with simultaneous mesh regularization . In GMP 00: Proceedings of the Geometric Modeling and Processing 2000, page 229, Washington, DC, USA, 2000. IEEE Computer Society.
[79] Petsc: Portable, extensible toolkit for scientific computation. http://www-unix.mcs.anl.gov/petsc/petsc-2/.
[80] T. Poeschl. Detecting surface irregularities using isophotes . Computer Aided Geometric Design, 1(2):163168, 1984.
[81] H. Pottmann. Visualizing curvature discontinuities of free-form surfaces. In EUROGRAPHICS 89, pages 529536, 1989.
[82] T. Rando and J. A. Roulier. Designing faired parametric surfaces. Computer-Aided Design, 23(7):492497, 1991.
[83] A. Razdan and M. Bae. Curvature estimation scheme for triangle meshes using biquadratic bezier patches . Computer Aided Design, to appear, 2005.
[84] J. Roulier and T. Rando. Measures of fairness for curves and surfaces. pages 75123. In [86].
[85] S. Rusinkiewicz. Estimating curvatures and their derivatives on triangle meshes. In Symposium on 3D Data Processing, Visualization, and Transmission, pages 486493, Sept 2004.
[86] N. S. Sapidis. Designing Fair Curves and Surfaces: Shape Quality in Geometric Modeling and Computer-Aided Design. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1994.
[87] N. S. Sapidis and G. D. Koras. Visualization of curvature plots and evaluation of fairness: an analysis of the effect of scaling. Computer Aided Geometric Design, 14(4):299311, 1997.
[88] R. Schneider and L. Kobbelt. Discrete fairing of curves and surfaces based on linear curvature distribution . In P.-J. Laurent, P. Sablonniere, and L. Schumaker, editors, Curve and Surface Design, Saint-Malo 1999, Innovations in Applied Mathematics, pages 371380, Saint-Malo, France, 2000. Vanderbilt University Press.
[89] R. Schneider and L. Kobbelt. Geometric fairing of irregular meshes for free-form surface design . Computer Aided Geometric Design, 18(4):359379, 2001.
[90] D. Schweitzer. Artificial texturing: An aid to surface visualization . In SIGGRAPH 83: Proceedings of the 10th annual conference on Computer graphics and interactive techniques, pages 2329, New York, NY, USA, 1983. ACM Press.
[91] L. R. Seidenberg, R. B. Jerard, and J. Magewick. Surface curvature analysis using color . In VIS 92: Proceedings of the 3rd conference on Visualization 92, pages 260267, Los Alamitos, CA, USA, 1992. IEEE Computer Society Press.
[92] C. H. Sequin. Cad tools for aesthetic engineering . Computer Aided Design, 37(7):737750, June 2005.
[93] J. M. Sullivan. Curvature measures for discrete surfaces . Preprint, 2002.
[94] T. Surazhsky, E. Magid, O. Soldea, G. Elber, and E. Rivlin. A comparison of gaussian and mean curvatures estimation methods on triangular meshes . In ICRA: International Conference on Robotics and Automation, pages 10211026, 2003.
[95] T. Tasdizen, R. Whitaker, P. Burchard, and S. Osher. Geometric surface smoothing via anisotropic diffusion of normals . In VIS 02: Proceedings of the conference on Visualization 02, pages 125132, Washington, DC, USA, 2002. IEEE Computer Society.
[96] G. Taubin. Curve and surface smoothing without shrinkage . In ICCV 95: Proceedings of the Fifth International Conference on Computer Vision, page 852, Washington, DC, USA, 1995. IEEE Computer Society.
[97] G. Taubin. Estimating the tensor of curvature of a surface from a polyhedral approximation . In ICCV 95: Proceedings of the Fifth International Conference on Computer Vision, page 902, Washington, DC, USA, 1995. IEEE Computer Society.
[98] G. Taubin. A signal processing approach to fair surface design . In SIGGRAPH 95: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, pages 351358, New York, NY, USA, 1995. ACM Press.
[99] G. Taubin. Geometric signal processing on polygonal meshes . In EUROGRAPHICS 2000 - STARs, 2000.
[100] Taucs: A library of sparse linear solvers. http://www.tau.ac.il/~stoledo/taucs/.
[101] H. Theisel. Vector Field Curvature and Applications . PhD thesis, Dept. of Computer Science, Univ. of Rostock, Germany, 1996.
[102] H. Theisel. Are isophotes and reflection lines the same ? Computer Aided Geometric Design, 18(7):711722, 2001.
[103] H. Theisel and G. Farin. The curvature of characteristic curves on surfaces . IEEE Comput. Graph. Appl., 17(6):8896, 1997.
[104] H. Theisel, C. R¨ossl, R. Zayer, and H.-P. Seidel. Normal based estimation of the curvature tensor for triangular meshes . In Pacific Conference on Computer Graphics and Applications, pages 288297, 2004.
[105] D.-E. Ulmet. Reflection curves-new computation and rendering techniques. International Journal of Mathematics and Mathematical Sciences, 21:11211132, 2004.
[106] R. van Damme and L. Alboul. Tight triangulations . In T. L. M. Daehlen and L. Schumaker, editors, Mathematical Methods for Curves and Surfaces, pages 517526, 1995.
[107] T. I. Vassilev. Fair interpolation and approximation of b-splines by energy minimization and points insertion . Computer-Aided Design, 28(9):753760, 1996.
[108] W. Welch and A. Witkin. Free-form shape design using triangulated surfaces . Computer Graphics, 28(Annual Conference Series):247256, 1994.
[109] W. Welch and A. P. Witkin. Variational surface modeling . In SIGGRAPH, pages 157166, 1992.
[110] J. W. Wesselink. Variational Modeling of Curves and Surfaces . PhD thesis, Technische Universiteit Eindhoven, 1996.
[111] G. Westgaard. Construction of Fair Curves and Surfaces. PhD thesis, Technische Universitat Berlin, Germany, 2000.
[112] G. Westgaard and H. Nowacki. Construction of fair surfaces over irregular meshes . In Symposium on Solid Modeling and Applications, pages 8898, 2001.
[113] G. Xu. Surface fairing and featuring by mean curvature motions . J. Comput. Appl. Math., 163(1):295309, 2004.
[114] G. Xu, Q. Pan, and C. L. Bajaj. Discrete surface modeling using geometric flows . ICES Technical Report 03-38, University of Texas at Austin, 2003.
[115] H. Yagou, Y. Ohtake, and A. G. Belyaev. Mesh smoothing via mean and median filtering applied to face normals . In Geometric Modeling and Processing, Theory and Applications, pages 124131, 2002.
[116] S. Yoshizawa and A. G. Belyaev. Fair triangle mesh generation with discrete elastica . In GMP 02: Proceedings of the Geometric Modeling and Processing Theory and Applications (GMP02), page 119, Washington, DC, USA, 2002. sIEEE Computer Society.
[117] C. Zhang, P. Zhang, and F. Cheng. Fairing spline curves and surfaces by minimizing energy . Computer-Aided Design, 33(13):913923, 2001.
[118] H. Zhang and E. Fiume. Mesh smoothing with shape or feature preservation . In Advances in Modeling, Animation and Rendering, pages 167182. Springer, 2002.
[119] Y. Zhang, C. Bajaj, and G. Xu. Surface smoothing and quality improvement of quadrilateral/hexahedral meshes with geometric flow . In Proceedings of the 14th Meshing Roundtable, to appear, San Diego, CA, September 2005.s
[120] D. Zorin. Curvature-based energy for simulation and variational modeling . In Int. Conf. on Shape Modeling and Applications(SMI), pages 198206, 2005.