A Discrete Model for Inelastic Deformation of Thin Shells

Yotam Gingold, Adrian Secord, Jefferson Y. Han, Eitan Grinspun and Denis Zorin
Media Research Lab, New York University

Thin shells
- Thin shells: thin, curved, flexible surfaces
- Good approximation for real-world objects
- Applications in entertainment, medicine, etc.

Context
- Terzopoulos and Fleischer 1988
 - Thin plates using splines
 - Fracture followed mesh edges
- O’Brien and Hodgins 1999, 2002
 - Volumetric meshes for brittle and ductile fracture
- Grinspun, Hirani, Desbrun and Schröder 2003
 - Discrete models using invariants
- Cohen-Steiner and Morvan 2003
 - Discrete curvatures

Motivation
- Simulation of thin shells
 - Simple to implement
 - Derivation from fundamental elasticity theory
 - Elegant discretization
 - Captures wide range of materials
- Simple shell model
 - Negligible deformation in the normal direction

Contributions
- New discrete bending strain
 - Expressed in terms of mesh invariants
- Applications
 - Elasticity
 - Plastic flow
 - Fracture
- Algorithmic enhancements
 - Search for fracture and collision events
 - Vertex budding
 - Collision response with fracture

Shape Operator
- 2nd order tensor — \(\Lambda \)
- For any tangent vector \(v \) on the surface, \(\Lambda v \) is the derivative of the surface unit normal in the direction of \(v \)
- Can be diagonalized for
 - The principal directions of curvature
 - The principal magnitudes of curvature

Membrane and bending strains
- Deformations of the shell middle surface
- Integrated over the shell thickness
- Membrane strain: in-plane stretching
- Bending strain: out-of-plane deformation

Discrete strains
- Discrete membrane strain
 - Measures change in squared length
 \[
 E_m = \frac{1}{2} \sum (I - r_i^2) (I - T_i) \frac{1}{A} \sum \left(\text{det} \left(\frac{\partial T_i}{\partial s} \right) \right)
 \]
- Discrete bending strain
 - Measures change in curvature magnitude and direction
 \[
 E_b = \frac{1}{2} \sum \left(\text{curl} \left(\frac{\partial T_i}{\partial s} \right) \right) \frac{1}{A} \sum \left(\text{det} \left(\frac{\partial T_i}{\partial s} \right) \right)
 \]

Budging
- Fracturing near existing edges can introduce silver triangles
- Vertex budding reparameterizes the mesh
- Move the vertex \(v \) to a location \(v' \) on the fracture line

Results: Light bulb
- Glass light bulb anchored into a rigid base
- Struck by a rigid metal ball
- Fracture, collisions and dynamics

Results: Plasticity
- Metal tube with plastic absorption of energy
- Realistic permanent denting behavior