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What makes a good scheme?

recursive application leads to a smooth 
surface

Example: Loop Scheme
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Example: Loop Scheme

Refinement rule
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Two geometric rules:
even (update old points)
odd (insert new)
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Example: Loop Scheme

α=  3/8n, n  >  3 ,  α=3/16 , if n=3  
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Control Points 

Vertices of initial mesh
define the surface
each influences finite part of surface
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Triangles and Quads
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Uniform splines
can be computed using subdivision
quartic box spline rules: 

1

8

1

8

3

8
3

8

1

16

1

16

1

16

1

16

1

16

1

16

5

8

Subdivision and Splines
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Extraordinary Vertices

valence 6 valence 4

valence ≠ 6 valence ≠ 4

Triangle meshes Quad meshes

regular

extraordinary
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Extraordinary
vertices
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Boundaries
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Creases etc.

Constructing the Rules

Start with spline rules 
define rules for: 
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invariance under 
rotations and 
translations

Constructing  the Rules

smoothness and 
Fairness

small support
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Invariance w.r.t rigid transforms

transform
T

transform
T

subdivide

subdivide
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Invariance
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Coefficients of masks must sum to 1

X
ai(pi + t) =

³X
ai
´
t+ p

1

displacement
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Crease Examples
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Subdivision Schemes

Primal Dual
(no interpolation)

Interp.Approx.

Catmull-
Clark

Kobbelt

Loop Butterfly

Doo-Sabin,
Midedge

Dyn-Levin-Liu
(non-linear)
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Catmull-Clark Scheme

Primal, quadrilateral, approximating
tensor-product bicubic splines
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Catmull-Clark Scheme

Reduction to a quadrilateral mesh
do one step of subdivision with special rules: 
only quads remain 
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Catmull-Clark Scheme

Extraordinary vertices
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Catmull-Clark Scheme

Boundaries, creases, corners
cubic spline (same as Loop!)
need to fix rules for C1-continuity
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Implementing subdivision

Operations needed:
create a copy of the mesh maintaining vertex 
correspondence with the old mesh
refine a mesh
collect all neighbors of a vertex
(for updating positions of old vertices,  
discussed at the last lecture)
find vertices of two triangles sharing an edge
(for computing positions of new vertices)
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Implementing subdivision 

Uniform refinement
can be achieved using two simple operations

split two triangles adding          edge flip
a vertex

© 2001, Denis Zorin

Implementing subdivision

Step 1 (left): split all edges in 
any order, adding vertices for every
edge and spit adjacent triangles in to 
two
Step 2 (right): flip all edges connecting
an old vertex with a newly inserted one
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Implementing an edge flip

Example: given a pair of half-edges he1,he2 flip the 
corresponding edge

he1

he2

he11he12

he22he21 f2

f1
he1.next = he22; he1.vertex = v4;
he2.next = he12; he2.vertex = v3;
he11.next = he1; 
h12.next =  he21; h12.face = f2;
h21.next = he2; 
he22.next = he11; he22.face = f1;
if (f2.halfedge == he22) 

f2.halfedge = he12;
if (f1.halfedge == he12)

f1. halfedge = he22;
if(v1.halfedge == he1)

v1.halfedge = he21;
if(v2.halfedge == he2) 

v2.halfedge = he11;

v2v1

v3

v4
v3

v1 v2

v4

f1f2

he11he12

he22he21

he2

he1

© 2001, Denis Zorin

Building a half-edge data structure

Similar to building face-based triangular mesh
Input: a list of vertices, a list of faces, each face is a list of vertex 

indices enumerated CCW
1. Create arrays of vertices, faces and halfedges, one half-edge for 

every seq. pair of vertices of every face; initialize all pointers to 
zero.

2. For each face f, with n vertices 
assign f.halfedge to its first half-edge; 

for each vertex v of a face, assign v->halfedge to the halfedge
starting at it if nothing is assigned to it yet; 
for each half-fedge he of a face, assign
he.face =f, he->next =next half-edge in the face,
he->vertex = next vertex in the face;
record half-edge pointer he in the edge map: 

edgemap(v[i],v[i+1]) = he

3. Go over all entries of the edge map, assign for half-edges  
edgemap(i,j) edgemap(i,j)    

links to each other if both exist
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Dealing with boundaries

To minimize implementation effort it is useful to 
create two halfedges for boundary edges, one of 
which has zero face pointer; 

A boundary vertex v should always have v.halfedge
pointing to a boundary halfedge.
Then it is easy e.g. to find two boundary neighbors 

of a vertex.


