
1

© 2001, Denis Zorin

What makes a good scheme?

recursive application leads to a smooth
surface

Example: Loop Scheme

© 2001, Denis Zorin

Example: Loop Scheme

Refinement rule

2

© 2001, Denis Zorin

Two geometric rules:
even (update old points)
odd (insert new)

1

8

1

8

3

8
3

8

α

α α

α α

1− nα

Example: Loop Scheme

α= 3/8n, n > 3 , α=3/16 , if n=3

© 2001, Denis Zorin

Control Points

Vertices of initial mesh
define the surface
each influences finite part of surface

3

© 2001, Denis Zorin

Triangles and Quads

© 2001, Denis Zorin

Uniform splines
can be computed using subdivision
quartic box spline rules:

1

8

1

8

3

8
3

8

1

16

1

16

1

16

1

16

1

16

1

16

5

8

Subdivision and Splines

4

© 2001, Denis Zorin

Extraordinary Vertices

valence 6 valence 4

valence ≠ 6 valence ≠ 4

Triangle meshes Quad meshes

regular

extraordinary

© 2001, Denis Zorin

Extraordinary
vertices

α

α α

α α

1− nα

Boundaries

1

8

3

4

1

8

1

2

1

2

Creases etc.

Constructing the Rules

Start with spline rules
define rules for:

5

© 2001, Denis Zorin

invariance under
rotations and
translations

Constructing the Rules

smoothness and
Fairness

small support

© 2001, Denis Zorin

Invariance w.r.t rigid transforms

transform
T

transform
T

subdivide

subdivide

6

© 2001, Denis Zorin

Invariance

1

8

1

8

3

8
3

8

α

α α

α α

1− nα p =
X

aipi

Coefficients of masks must sum to 1

X
ai(pi + t) =

³X
ai
´
t+ p

1

displacement

© 2001, Denis Zorin

Crease Examples

7

© 2001, Denis Zorin

Subdivision Schemes

Primal Dual
(no interpolation)

Interp.Approx.

Catmull-
Clark

Kobbelt

Loop Butterfly

Doo-Sabin,
Midedge

Dyn-Levin-Liu
(non-linear)

© 2001, Denis Zorin

Catmull-Clark Scheme

Primal, quadrilateral, approximating
tensor-product bicubic splines

1

64 9

163

32

1

64

1

64

1

64

3

32

3

32

3

32

1

16

3

8

3

8

1

16

1

16

1

16

1

4

1

4

1

4

1

4

8

© 2001, Denis Zorin

Catmull-Clark Scheme

Reduction to a quadrilateral mesh
do one step of subdivision with special rules:
only quads remain

© 2001, Denis Zorin

Catmull-Clark Scheme

Extraordinary vertices

β

K

γ

K

1− γ − β
γ =

1

4K

β =
3

2K

β

K

β

K

γ

K

γ

K

9

© 2001, Denis Zorin

Catmull-Clark Scheme

Boundaries, creases, corners
cubic spline (same as Loop!)
need to fix rules for C1-continuity

1

32

3

32

3

32

1

32

1

2
−
1

4
cosθ

1

4
(1 + cosθ)

© 2001, Denis Zorin

Implementing subdivision

Operations needed:
create a copy of the mesh maintaining vertex
correspondence with the old mesh
refine a mesh
collect all neighbors of a vertex
(for updating positions of old vertices,
discussed at the last lecture)
find vertices of two triangles sharing an edge
(for computing positions of new vertices)

10

© 2001, Denis Zorin

Implementing subdivision

Uniform refinement
can be achieved using two simple operations

split two triangles adding edge flip
a vertex

© 2001, Denis Zorin

Implementing subdivision

Step 1 (left): split all edges in
any order, adding vertices for every
edge and spit adjacent triangles in to
two
Step 2 (right): flip all edges connecting
an old vertex with a newly inserted one

11

© 2001, Denis Zorin

Implementing an edge flip

Example: given a pair of half-edges he1,he2 flip the
corresponding edge

he1

he2

he11he12

he22he21 f2

f1
he1.next = he22; he1.vertex = v4;
he2.next = he12; he2.vertex = v3;
he11.next = he1;
h12.next = he21; h12.face = f2;
h21.next = he2;
he22.next = he11; he22.face = f1;
if (f2.halfedge == he22)

f2.halfedge = he12;
if (f1.halfedge == he12)

f1. halfedge = he22;
if(v1.halfedge == he1)

v1.halfedge = he21;
if(v2.halfedge == he2)

v2.halfedge = he11;

v2v1

v3

v4
v3

v1 v2

v4

f1f2

he11he12

he22he21

he2

he1

© 2001, Denis Zorin

Building a half-edge data structure

Similar to building face-based triangular mesh
Input: a list of vertices, a list of faces, each face is a list of vertex

indices enumerated CCW
1. Create arrays of vertices, faces and halfedges, one half-edge for

every seq. pair of vertices of every face; initialize all pointers to
zero.

2. For each face f, with n vertices
assign f.halfedge to its first half-edge;

for each vertex v of a face, assign v->halfedge to the halfedge
starting at it if nothing is assigned to it yet;
for each half-fedge he of a face, assign
he.face =f, he->next =next half-edge in the face,
he->vertex = next vertex in the face;
record half-edge pointer he in the edge map:

edgemap(v[i],v[i+1]) = he

3. Go over all entries of the edge map, assign for half-edges
edgemap(i,j) edgemap(i,j)

links to each other if both exist

12

© 2001, Denis Zorin

Dealing with boundaries

To minimize implementation effort it is useful to
create two halfedges for boundary edges, one of
which has zero face pointer;

A boundary vertex v should always have v.halfedge
pointing to a boundary halfedge.
Then it is easy e.g. to find two boundary neighbors

of a vertex.

