Example: Loop Scheme

What makes a good scheme?

recursive application leads to a smooth surface

Example: Loop Scheme

Refinement rule

Example: Loop Scheme

Two geometric rules:
■ even (update old points)
■ odd (insert new)

$\alpha=3 / 8 n, n>3, \alpha=3 / 16$, if $n=3$

Control Points

Vertices of initial mesh
■ define the surface
■ each influences finite part of surface

Triangles and Quads

Subdivision and Splines

Uniform splines
■ can be computed using subdivision
■ quartic box spline rules:

Extraordinary Vertices

Triangle meshes

regular

extraordinary

Constructing the Rules

Start with spline rules
■ define rules for:

Invariance w.r.t rigid transforms

Invariance

Coefficients of masks must sum to 1

Crease Examples

Subdivision Schemes

Catmull-Clark Scheme

Primal, quadrilateral, approximating
■ tensor-product bicubic splines

Catmull-Clark Scheme

Reduction to a quadrilateral mesh
■ do one step of subdivision with special rules: only quads remain

Catmull-Clark Scheme

Extraordinary vertices

$$
\begin{aligned}
& \gamma=\frac{1}{4 K} \\
& \beta=\frac{3}{2 K}
\end{aligned}
$$

Catmull-Clark Scheme

Boundaries, creases, corners
■ cubic spline (same as Loop!)
■ need to fix rules for C^{1}-continuity

Implementing subdivision

Operations needed:
■ create a copy of the mesh maintaining vertex correspondence with the old mesh

- refine a mesh

■ collect all neighbors of a vertex
(for updating positions of old vertices, discussed at the last lecture)

■ find vertices of two triangles sharing an edge (for computing positions of new vertices)

Implementing subdivision

Uniform refinement
■ can be achieved using two simple operations

split two triangles adding a vertex

edge flip

Implementing subdivision

Step 1 (left): split all edges in any order, adding vertices for every edge and spit adjacent triangles in to two
Step 2 (right): flip all edges connecting an old vertex with a newly inserted one

Implementing an edge flip

```
Example: given a pair of half-edges he1,he2 flip the corresponding edge
```



```
he1.next = he22; he1.vertex = v4;
```

he1.next = he22; he1.vertex = v4;
he2.next = he12; he2.vertex = v3;
he2.next = he12; he2.vertex = v3;
he11.next = he1;
he11.next = he1;
h12.next = he21; h12.face = f2;
h12.next = he21; h12.face = f2;
h21.next = he2;
h21.next = he2;
he22.next = he11; he22.face = f1;
he22.next = he11; he22.face = f1;
if (f2.halfedge == he22)
if (f2.halfedge == he22)
f2.halfedge = he12;
f2.halfedge = he12;
if (f1.halfedge == he12)
if (f1.halfedge == he12)
f1. halfedge = he22;
f1. halfedge = he22;
if(v1.halfedge == he1)
if(v1.halfedge == he1)
v1.halfedge = he21;
v1.halfedge = he21;
if(v2.halfedge == he2)
if(v2.halfedge == he2)
v2.halfedge = he11;

```
    v2.halfedge = he11;
```


Building a half-edge data structure

Similar to building face-based triangular mesh
Input: a list of vertices, a list of faces, each face is a list of vertex indices enumerated CCW

1. Create arrays of vertices, faces and halfedges, one half-edge for every seq. pair of vertices of every face; initialize all pointers to zero.
2. For each face f, with n vertices
assign f. halfedge to its first half-edge;
for each vertex v of a face, assign v->halfedge to the halfedge starting at it if nothing is assigned to it yet;
for each half-fedge he of a face, assign
he.face =f, he->next =next half-edge in the face, he->vertex = next vertex in the face; record half-edge pointer he in the edge map:

$$
\text { edgemap }(v[i], v[i+1])=\text { he }
$$

3. Go over all entries of the edge map, assign for half-edges edgemap(i,j) edgemap(i,j)
links to each other if both exist
© 2001, Denis Zorin

Dealing with boundaries

To minimize implementation effort it is useful to create two halfedges for boundary edges, one of which has zero face pointer;

A boundary vertex v should always have v . halfedge pointing to a boundary halfedge.
Then it is easy e.g. to find two boundary neighbors of a vertex.

