Visibility algorithms

Visibility problem:

given a collection of objects in 3D and a camera, for each point (x,y) in the image plane determine the closest object point that projects to (x,y).

Different types of algorithms:

- process objects one by one, update visibility for all pixels covered by object (Z buffer, painter’s algorithm)
- process pixels one by one, for each pixel update visibility
Z buffer

Assumptions:

- each pixel has storage for a z-value, in addition to RGB
- all objects are “scanconvertible” (typically are polygons, lines or points)

Algorithm:

initialize zbuf to maximal value

for each object

for each pixel (i,j) obtained by scan conversion

if znew(i,j) < zbuf(i,j)

zbuf(i,j) = znew(i,j) ;
write pixel(i,j)

What are z values?

Z values are obtained by applying the projection transform, that is, mapping the viewing frustum to the standard cube.

Z value increases with the distance to the camera.

Z values for each pixel are computed for each pixel covered by a polygon using linear interpolation of z values at vertices.

Typical Z buffer size: 24 bits (same as RGB combined).
Painter’s algorithm

Algorithm:
- Apply projection transform to all polygons.
- Sort all polygons by z, splitting intersecting polygons along z.
- Scan convert polygons in back to front order.
- Polygons that are closer overwrite those that are further away.

Drawbacks: requires sorting and splits; pixels are overwritten many times.

Front to back version: add a bit to pixel to indicate it was written.

Ray casting/ray tracing

Iterate over pixels, not objects.

Effects that are difficult with Z-buffer, are easy with ray tracing: shadows, reflections, transparency, procedural textures and objects.

Assume image plane is placed in the virtual space (e.g. front plane of the viewing frustum).

Algorithm:

for each pixel
 shoot a ray r from the camera to the pixel
 intersect with every object
 find closest intersection
Ray casting

Basic operation: intersect a ray with an object.
Object types are more varied than for Z-buffer:

- polygon
- sphere
- cone
- cylinder
- general quadric
- height field
- ...

Pixel rays

Goal: Find direction of the ray to the center of the pixel (i,j). Let camera parameters be

- c position
- α horizontal field of view
- v viewing direction
- u up direction
- s aspect ratio

Then the image half-width in the “virtual world” units is

$$w = n \cdot \tan(\frac{\alpha}{2})$$

The half-height is

$$h = s \cdot \tan(\frac{\alpha}{2})$$
Pixel rays

From coordinates in pixel units to virtual world coordinates in image plane:

Pixel size:
\[
\frac{2w}{N} \times \frac{2h}{M}
\]

Displacements of the pixel from the image center in virtual space units:
\[
h - \left(j + \frac{1}{2} \right) \frac{2h}{M}, \quad \left(i + \frac{1}{2} \right) \frac{2w}{N} - w
\]

Pixel rays

Virtual world coordinates of pixel (i,j):
image center + displacements.

Image center: \(c + vn \)

Pixel (i, j) = \(c + vn + \)
\[
\left(h - \left(j + \frac{1}{2} \right) \frac{2h}{M} \right) u + \left(i + \frac{1}{2} \right) \frac{2w}{N} - w \right) v \times u
\]
Intersecting a line and a plane

Same old trick: use the parametric equation for the line, implicit for the plane. In the case of a pixel ray, \(b = p(i,j) - c \)

\[
(c + bt^i - p , n) = 0
\]

\[t^i = \frac{(c - p , n)}{(b , n)} \]

Check for zero in the denominator; \(t^i \) should be positive for the intersection to be in front of the camera.

Intersection with a sphere

Two questions are important:
- is there an intersection?
- where are the intersection points?

Most rays do not hit a sphere if it is small enough, so a fast “no” to the first question will speed up our calculation.

To answer the second question, we have to solve a quadratic equation. To answer the first, we do not have to.
Intersection with a sphere

Question: is there intersection?
The distance from the center of the sphere to the ray should be less than radius.

Projection of a-c on b:
\[d = \frac{(a-c,b)}{|b|} \]
The square of length:
\[((a-c) - d)^2 = \left(a - c - \frac{(a-c,b)}{|b|}b \right)^2 = R^2 \]
If \(R^2 > r^2 \), there is no intersection.

Intersection with a sphere

Question: what are the intersection points?
Plug in the parameteric ray equation into the sphere equation. Sphere equation can be written as \((a-q)^2 = r^2\), where \(a\) is the center and \(q\) is a point on the sphere.

\[
(a - c - bt)^2 = r^2 \\
b^2t^2 - 2(a - c,b)t + (a - c)^2 - r^2 = 0 \\
A \cdot t^2 + Bt + C = 0
\]

Solutions of this equation, if any, are the values of parameter \(t\) for the intersection points.