Ray surface intersections

Some primitives

Finite primitives:
- polygons
- spheres, cylinders, cones
- parts of general quadrics

Infinite primitives:
- planes
- infinite cylinders and cones
- general quadrics

A finite primitive is often an intersection of an infinite with an area of space

Intersecting rays with objects

General approach:
Use whenever possible the implicit equation \(F(q) = 0 \) of the object or object parts. Use parametric equation of the line of the ray, \(q = p + vt \).
Solve the equation \(F(p + vt) = 0 \) to find possible values of \(t \). Find the minimal nonnegative value of \(t \) to get the intersection point (checking that \(t \) is nonnegative is important: we want intersections with the ray starting from \(p \), not with the whole line!

Polygon-ray intersections

Two steps:
- intersect with the plane of the polygon
- check if the intersection point is inside the polygon

We know how to compute intersections with the plane (see prev. lecture). Let \(q = [q_x, q_y, q_z] \) be the intersection point.

Possible to do the whole calculation using 3d points, but it is more efficient to use 2d points.

Converting to the coordinates in the plane is computationally expensive. Idea: project to a coordinate plane (XY, YZ, or XZ) by discarding one of the vector coordinates.

We cannot always discard, say, \(Z \), because the polygon may project to an interval, if it is in a plane parallel to \(Z \).
Choose the coordinate to discard so that the corresponding component of the normal to the polygon is maximal. E.g. if \(n_x > n_y \) and \(n_x > n_z \), discard \(X \).

2D Polygon-ray intersections

Now we can assume that all vertices \(v_i \) and the intersection point \(q \) are 2D points.

Assume that polygons are convex. A convex polygon is the intersection of a set of half-planes, bounded by the lines along the polygon edges. To be inside the polygon the point has to be in each half-plane. Recall that the implicit line equation can be used to check on which side of the line a point is.
2D Polygon-ray intersections

Equation of the line through the edge connecting vertices v_i and v_{i+1}:

$$\left(\left[\begin{array}{c} v_i^x-v_{i+1}^x \\ v_i^y-v_{i+1}^y \end{array}\right] \cdot \left[\begin{array}{c} x-v_{i+1}^x \\ y-v_{i+1}^y \end{array}\right]\right)+\left(v_i^x-v_{i+1}^x\right)y-v_i^y=0$$

If the quantity on the right-hand side is positive, then the point (x,y) is to the right of the edge, assuming we are looking from v_i to v_{i+1}.

Algorithm: if for each edge the quantity above is nonnegative for $x=q_x$, $y=q_y$ then the point q is in the polygon. Otherwise, it is not.

In the formulas x and y should be replaced by x and z if y coord. was dropped, or by y and z if x was dropped.

Infinite cylinder-ray intersections

Infinite cylinder along y of radius r has equation $x^2+z^2-r^2=0$.

The equation for a more general cylinder of radius r oriented along a line $p_a + v_at$:

$$(q-p_a-\langle v_a,q-p_a\rangle v_a)^2-r^2=0$$

where $q=(x,y,z)$ is a point on the cylinder.

Cylinder-ray intersections

POV - ray like cylinder with caps: cap centers at p_1 and p_2, radius r.

Infinite cylinder equation: $p_a = p_1$, $v_a = (p_2-p_1)/|p_2-p_1|$.

The finite cylinder (without caps) is described by equations:

$$(q-p_a-\langle v_a,q-p_a\rangle v_a)^2-r^2=0$$

and $\langle v_a,q-p_1\rangle > 0$ and $\langle v_a,q-p_2\rangle < 0$.

The equations for caps are:

$$(v_a,q-p_1)=0, (q-p_1)^2<r^2$$

for the bottom cap

$$(v_a,q-p_2)=0, (q-p_2)^2<r^2$$

for the top cap

Algorithm with equations:

Step 1: Find solutions t_1 and t_2 of $At^2+BT+C=0$ if they exist. Mark as intersection candidates the one(s) that are nonnegative and for which $\langle v_a,q-p_1\rangle > 0$ and $\langle v_a,q-p_2\rangle < 0$.

Step 2: Compute t_3 and t_4, the parameter values for which the ray intersects the upper and lower planes of the caps.

If these intersections exist, mark as intersection candidates those that are nonegative and $(q-p_1)^2<r^2$ (respectively $(q-p_2)^2<r^2$).

In the set of candidates, pick the one with min. t.

Cylinder caps

A finite cylinder with caps can be constructed as the intersection of an infinite cylinder with a slab between two parallel planes, which are perpendicular to the axis.

To intersect a ray with a cylinder with caps:

- intersect with the infinite cylinder;
- check if the intersection is between the planes;
- intersect with each plane;
- determine if the intersections are inside caps;
- out of all intersections choose the one with minimal t.

Algebraic expressions:

Infinite cylinder

$$\left[\begin{array}{c} v_i^x-v_{i+1}^x \\ v_i^y-v_{i+1}^y \end{array}\right] \cdot \left[\begin{array}{c} x-v_{i+1}^x \\ y-v_{i+1}^y \end{array}\right]+\left(v_i^x-v_{i+1}^x\right)y-v_i^y=0$$

Finite cylinder

$$(q-p_a-\langle v_a,q-p_a\rangle v_a)^2-r^2=0$$

Cylindrical caps

$$\langle v_a,q-p_1\rangle = 0, (q-p_1)^2<r^2$$

for the bottom cap

$$\langle v_a,q-p_2\rangle = 0, (q-p_2)^2<r^2$$

for the top cap

Algebraic expressions:

$$\left[\begin{array}{c} v_i^x-v_{i+1}^x \\ v_i^y-v_{i+1}^y \end{array}\right] \cdot \left[\begin{array}{c} x-v_{i+1}^x \\ y-v_{i+1}^y \end{array}\right]+\left(v_i^x-v_{i+1}^x\right)y-v_i^y=0$$

$$(q-p_a-\langle v_a,q-p_a\rangle v_a)^2-r^2=0$$

$$\langle v_a,q-p_1\rangle = 0, (q-p_1)^2<r^2$$

$$\langle v_a,q-p_2\rangle = 0, (q-p_2)^2<r^2$$
Infinite cone-ray intersections

Infinite cone along y with apex half-angle α has equation
$$x^2 + z^2 - y^2 = 0.$$
The equation for a more general cone oriented along a line $p_a + v_a t$, with apex at p_a:
$$\cos^2 \alpha (q - p_a - (v_a, q - p_a)v_a)^2 - \sin^2 \alpha (v_a, q - p_a)^2 = 0$$
where $q = (x,y,z)$ is a point on the cone, and v_a is assumed to be of unit length.

Cone-ray intersections

A finite cone with caps can also be constructed as intersection of an infinite cone with a slab.
Intersections are computed exactly in the same way as for the cylinder, but instead of the quadratic equation for the infinite cylinder the equation for the infinite cone is used, and the caps may have different radii.
Both for cones and cylinders intersections can be computed somewhat more efficiently if we first transform the ray to a coordinate system aligned with the cone (cylinder). This requires extra programming to find such transformation.

General quadrics

A general quadric has equation
$$Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fxz + Gx + Hy + Ix + J = 0$$
Intersections with general quadrics are computed in a way similar to cones and cylinders: for a ray $p + v t$, take $x = p_x + v_x t$, $y = p_y + v_y t$, $z = p_z + v_z t$; and solve the equation for t; if there are solutions, take the smaller nonnegative one.
Infinite cones and cylinders are special cases of general quadrics.
General quadrics

Nondegenerate quadrics

- Hyperbolic paraboloid: $x^2/a^2 - z^2/c^2 - 2y = 0$
- Elliptic paraboloid: $x^2/a^2 + z^2/c^2 - 2y = 0$
- Cone: $x^2/a^2 - y^2/b^2 + z^2/c^2 = 0$

Degenerate quadrics

- Planes (no quadratic terms),
- Pairs of parallel planes (e.g., $x^2 - 1 = 0$)
- Pairs of intersecting planes (e.g., $x^2 - 1 = 0$)
- Elliptic cylinders (e.g., $x^2 + z^2 - 1 = 0$)
- Hyperbolic cylinders (e.g., $x^2 - z^2 - 1 = 0$)
- Parabolic cylinders (e.g., $x^2 - z = 0$)

Possible to get "imaginary" surfaces (that is, with no points)! Example: $x^2 + 1 = 0$