2D transformations
Homogeneous coordinates

Uses of Transformations

- Modeling: position and resize parts of a complex model;
- Viewing: define and position the virtual camera
- Animation: define how objects move/change with time
Transformations

Examples of transformations:

- **Translation**
- **Rotation**
- **Scaling**
- **Shear**

More examples:

- Reflection with respect to the y-axis
- Reflection with respect to the origin
Transformations

Linear transformations: take straight lines to straight lines.
All of the examples are linear.
Affine transformations: take parallel lines to parallel lines.
All of the examples are affine,
an example of linear non-affine is perspective projection.
Orthogonal transformations: preserve distances,
moves all objects as rigid bodies.
rotation, translation and reflections are affine.

Transformations and matrices

Any affine transformation can be written as
\[
\begin{pmatrix}
 x' \\
 y'
\end{pmatrix} = \begin{pmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{pmatrix} \begin{pmatrix}
 x \\
 y
\end{pmatrix} + \begin{pmatrix}
 b_1 \\
 b_2
\end{pmatrix} \quad p' = Ap
\]

Images of basis vectors under affine transformations:
\[
\begin{align*}
 e_x &= \begin{pmatrix}
 1 \\
 0
 \end{pmatrix} \\
 Ae_x &= \begin{pmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
 \end{pmatrix} \begin{pmatrix}
 1 \\
 0
 \end{pmatrix} = \begin{pmatrix}
 a_{11} \\
 a_{21}
 \end{pmatrix} \quad Ae_y = \begin{pmatrix}
 a_{21} \\
 a_{22}
 \end{pmatrix}
\end{align*}
\]
Transformations and matrices

Matrices of some transformations:

\[
\begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix}
\], shear

\[
\begin{pmatrix}
s & 0 \\
0 & s
\end{pmatrix}
\], scale by factor s

\[
\begin{pmatrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{pmatrix}
\], rotation

\[
\begin{pmatrix}
-1 & 0 \\
0 & -1
\end{pmatrix}
\], reflection with respect to the origin

\[
\begin{pmatrix}
-1 & 0 \\
0 & 1
\end{pmatrix}
\], reflection with respect to the \(y \)-axis

Problem

Even for affine transformations we cannot write them as a single 2x2 matrix; we need an additional vector for translations.

We cannot write all linear transformations even in the form \(Ax + b \) where \(A \) is a 2x2 matrix and \(b \) is a 2d vector. Example: perspective projection

\[
\begin{bmatrix}
x, y \\
x', y'
\end{bmatrix}
\]

\[
\begin{align*}
x' &= 1 \\
y' &= y/x
\end{align*}
\]

equations not linear!
Homogeneous coordinates

- replace 2d points with 3d points, last coordinate 1
- for a 3d point \((x,y,w)\) the corresponding 2d point is \((x/w,y/w)\) if \(w\) is not zero
- each 2d point \((x,y)\) corresponds to a line in 3d; all points on this line can be written as \([kx,ky,k]\) for some \(k\).
- \((x,y,0)\) does not correspond to a 2d point, corresponds to a direction (will discuss later)
- Geometric construction: 3d points are mapped to 2d points by projection to the plane \(z=1\) from the origin

From homogeneous to 2d: \([x,y,w]\) becomes \([x/w,y/w]\)
From 2d to homogeneous: \([x,y]\) becomes \([kx,ky,k]\)
(can pick any nonzero \(k\))

© 1999, Denis Zorin
Homogeneous Transformations

Any linear transformation can be written in matrix form in homogeneous coordinates.

Example 1: translations

\[[x, y] \text{ in hom. coords is } [x, y, 1] \]

\[
\begin{bmatrix}
 x' \\
 y' \\
 w'
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & t_x & 0 \\
 0 & 1 & t_y & 0 \\
 0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

Example 2: perspective projection

\[x' = 1 \]
\[y' = y/x \]
\[w' = 1 \]

Can multiply all three components by the same number -- the 2D point won’t change! Multiply by x.

\[
\begin{bmatrix}
 x' \\
 y' \\
 w'
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]
Matrices of basic transformations

\[
\begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix} \quad \text{rotation}
\begin{bmatrix}
1 & 0 & t_x \\
0 & 1 & t_y \\
0 & 0 & 1
\end{bmatrix} \quad \text{translation}
\]

\[
\begin{bmatrix}
s_x & 0 & 0 \\
0 & s_y & 0 \\
0 & 0 & 1
\end{bmatrix} \quad \text{scaling}
\begin{bmatrix}
1 & s & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix} \quad \text{skew}
\]

\[
\begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{14} \\
0 & 0 & 1
\end{bmatrix} \quad \text{general affine transform}
\]

Homogeneous line equation

Implicit line equation in 2D: \((n, q-p) = 0,\)
\(n = 2D \text{ vector, } p = 2D \text{ point on the line.}\)
Goal: rewrite in homogeneous coordinates.

2D point corresponds to a 3D line through origin;
2D line corresponds to a plane through origin
In other words, the 2D line is intersection of a plane through origin with the plane \(z=1.\)
Homogeneous line equation

Rewrite the line equation:
\[(n, q - p) = n_x x + n_y y + (n_z - p) = \left([n_x, n_y, -(n_z, p)], [x, y, 1]\right) = (N, \bar{q})\]

where \(N = [n_x, n_y, -(n_z, p)]\) is the normal to the plane corresponding to the line, and \(\bar{q}\) is the homogeneous form of \(q = [x, y]: \bar{q} = [x, y, 1]\)

Homogeneous form of the line equation:
\[(N, \bar{q}) = 0\]

Intersection of two lines

Let homogeneous equations of the two lines be
\((N_1, q) = 0\), and \((N_2, q) = 0\).

The two lines are intersections of planes with normals \(N_1\) and \(N_2\) with the plane \(z = 1\).

Intersection of lines = intersection point of the common line of the two planes with the plane \(z = 1\).

The direction of the common line is the cross product:
\[N_1 \times N_2\]

This is also (one of possible) homogeneous forms of the intersection point!
How to intersect two lines

Step 1: Convert equations to homogeneous form.

Step 2: Compute the vector product $\mathbf{N}_1 \times \mathbf{N}_2$

Step 3: Convert $\mathbf{N}_1 \times \mathbf{N}_2$ from homogeneous coordinates to 2D, dividing by the last component (may be not 1!)

Line through two points

Goal: given two points in homogeneous coordinates, find the homogeneous equation of the line through these points, that is, the vector \mathbf{N} in the equation $(\mathbf{N}, \mathbf{q}) = 0$

Homogeneous form of a point = 3D vector from the origin to the point.

Line through 2 points = intersection of the plane spanned by two lines with the plane $z=1$

Normal to that plane (same as \mathbf{N} in the line equation):

$$\mathbf{N} = \mathbf{p}^1 \times \mathbf{p}^2 = [p^1_x, p^1_y, 1] \times [p^2_x, p^2_y, 1]$$
Intersection of two lines

intersection of two lines through two pairs of points all given in homogeneous form.

Apply formulas for line through two points and for intersection of lines:

\[q^i = (p^1 \times p^2) \times (p^3 \times p^4) \]

Mapping quads to quads

A common operation for texture mapping: find a transformation mapping a rectangular image to a quadrilateral.

Goal: solve a somewhat more general problem: find a linear transform mapping one quad \((A,B,C,D)\) to another \((a,b,c,d)\). Assume all points given in homogeneous coordinates.

Idea: to define a 3x3 linear transform (=matrix) \(M\), it is sufficient to define its action on three vectors.

Choose suitable points for which we know what the images should be.
Suppose for known vectors H_1, H_2, H_3 we know that the images should be h_1, h_2, h_3: $MH_1 = h_1$, $MH_2 = h_2$, $MH_3 = h_3$. Combine three vector equations into one matrix equation:

$$
\begin{bmatrix}
H_{1x} & H_{2x} & H_{3x} \\
H_{1y} & H_{2y} & H_{3y} \\
H_{1z} & H_{2z} & H_{3z}
\end{bmatrix}
\begin{bmatrix}
M \\
H
\end{bmatrix}
=
\begin{bmatrix}
h_{1x} & h_{2x} & h_{3x} \\
h_{1y} & h_{2y} & h_{3y} \\
h_{1z} & h_{2z} & h_{3z}
\end{bmatrix}
$$

Solving $MH = h$, we get $M = hH^{-1}$

Mapping quads to quads

Choosing the 3 points: it turns out, intersections of the sides and diagonals are convenient:

We can compute all points using the formula for intersecting 2 lines through two pairs of points.
Intersections of sides and diagonals

\[H_1 = (B \times A) \times (C \times D) \quad \text{Similar for } h_1, h_2, h_3 \]
\[H_2 = (A \times D) \times (B \times C) \]
\[H_3 = (A \times C) \times (B \times D) \quad \text{To find the matrix } M, \]
\[\text{build matrices } H \text{ and } h, \]
\[\text{and compute } hH^{-1}. \]

Mapping rectangles to quads

Problem: map a square \([-1, 1] \times [-1, 1]\) to an arbitrary quadrilateral with vertices \(a, b, c, d\) using a linear map \(M\).
Points at infinity

Idea: look at images of homogeneous points $H_2=[1,0,0]$, $H_1=[0,1,0]$, $H_3=[0,0,1]$

In this case the matrix H is identity, and $M = h$.

What are points with last component zero?

- $[1,0,0]$ “intersection” of horizontal sides (point at infinity for direction $[1,0]$)
- $[1,0,0]$ “intersection” of vertical sides (point at infinity for direction $[0,1]$)
- $[0,0,1]$ intersection of diagonals

Mapping rectangles to quads

Using formulas for intersections of lines, we get

- $h_1 = (b \times a) \times (c \times d)$
- $h_2 = (a \times d) \times (b \times c)$
- $h_3 = (a \times c) \times (b \times d)$

Finally, we obtain the transform:

$$
M = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
= \begin{bmatrix}
h_{1x} & h_{2x} & h_{3x} \\
h_{1y} & h_{2y} & h_{3y} \\
h_{1z} & h_{2z} & h_{3z}
\end{bmatrix}
$$

Note the last line is not $[0,0,1]$, this is not an affine transform!
Texture Mapping

- Put image on a quadrilateral (can be thought of as rectangle viewed in perspective)
- Map image to the square [-1,1]x[-1,1]
- Recall scan conversion: we traverse pixels along scan lines intersecting the quadrilateral; for a pixel $p=[i,j]$ need to determine the pixel $[m,n]$ in the image.
- to determine color, need the inverse of M: first, find the point q in the square which is mapped to p by M, second, find the pixel in the image that maps to q.

\[\begin{align*}
\text{convert } [i,j] \text{ to homogeneous form: } [i,j,1] = p \\
\text{apply } M^{-1}: [t,r,s] = M^{-1}p; \text{ we get a point in the square}
\end{align*}\]

\[\begin{align*}
\text{convert back to 2D coordinates: } [t/s,r/s] \\
\text{rescale and round to get pixel coordinates:}
\quad m = (\text{int})(\text{width}*(t/s+1)/2.0); \\
\quad n = (\text{int})(\text{height}*(r/s+1)/2.0);
\end{align*}\]
Putting it all together

Given a an image of size width X height and four corners of a quadrilateral a, b,c,d in homogeneous coordinates

- compute the matrix M using intersections of sides $h1$, $h2$ and intersection of diagonals $h3$
- compute the inverse of M
- scan convert the quadrilateral; for each pixel to be painted, determine the pixel of the image corresponding to it; use its color to paint the pixel

Implementation

- Representing matrices in C: I recommend against using 2d arrays (two many pitfalls) use a 1d array with 9 elements to represent 3 by 3 matrix, and expressions of the type $m[3*i+j]$ to address element $m[i,j]$; note that indices start from 0.
- Write a small matrix/vector library, implementing operations like add two vectors, multiply a vector by a number, multiply a matrix and a vector, dot product, vector product.
Inverse matrix

Code for inverse:

\[
D = m[0]*m[4]*m[8] - m[0]*m[5]*m[7] - \\
m[3]*m[1]*m[8] + m[3]*m[2]*m[7] + \\
m[6]*m[1]*m[5] - m[6]*m[2]*m[4];
\]

\[
\text{minv}[0] = (m[4]*m[8] - m[5]*m[7]) / D;
\]

\[
\text{minv}[1] = -(m[1]*m[8] - m[2]*m[7]) / D;
\]

\[
\text{minv}[2] = (m[1]*m[5] - m[2]*m[4]) / D;
\]

\[
\text{minv}[3] = -(m[3]*m[8] - m[5]*m[6]) / D;
\]

\[
\text{minv}[4] = (m[0]*m[8] - m[2]*m[6]) / D;
\]

\[
\text{minv}[5] = -(m[0]*m[5] - m[2]*m[3]) / D;
\]

\[
\text{minv}[6] = (m[3]*m[7] - m[4]*m[6]) / D;
\]

\[
\text{minv}[7] = -(m[0]*m[7] - m[1]*m[6]) / D;
\]

\[
\text{minv}[8] = (m[0]*m[4] - m[1]*m[3]) / D;
\]