Manifold Based Construction of Arbitrarily Smooth Surfaces

Elif Tosun

Advisor: Denis Zorin
The Problem
Smooth Surface Construction

Main Approaches

- Stitching polynomial patches
 - Need the match patches on boundaries
 - Complexity increases with smoothness

- Subdivision
 - Good visual quality
 - \(C^2 \) away from extraordinary vertices
Manifold Based Approach

- Introduced by Grimm & Hughes 1995
- Idea:
 - Parameterize over overlapping patches
 - Blend local geometries to get global geometry
- Solves problem of “stitching”
- Also the discontinuities near extra ordinary vertices
Why Manifolds?

Allows us to have:

- Any prescribed smoothness including $C^¥$ with explicit nonsingular parameterizations of same smoothness
- At least 3-flexible surfaces
 - Prescribe derivatives to avoid artificial flat spots
- Linear dependence on control points
- Fixed size local support for basis functions
- Good visual quality … …simultaneously!
Introduction: Manifolds

Manifold M

Charts (C_i, j_i)

$\begin{align*}
&\text{If transition map } t_{ji} \in C^k \text{ then } M \text{ is a } C^k \text{ manifold} \\
&(C_i, j_i) = M
\end{align*}$
Introduction: Embedding

- \(f_i^l : C_i \rightarrow \mathbb{R}^3 \) defines geometry locally per chart
- Use partition of unity to define global geometry
 \((\sum_i w_i \circ j_i^{-1} = 1) \)
- Geometry evaluated per chart \(C_i \):
 \[
 f_i(x) = \sum_{j: \varphi_i(x) \in \varphi_j(C_j)} w_j(t_{ji}(x)) f_j^l(t_{ji}(x))
 \]
- 3 components: transition maps \(t_{ji} \)
 pou \(w_i \)
 geometry functions \(f_i^l \)

"If all components \(C^{\text{inf}} \) then surface \(C^{\text{inf}}"
Charts & Transition Maps

\[j_i^{-1} = c_i \circ L_i \]

- \(L_i \): maps faces bilinearly to plane
- \(c_i \): wedge \(\rightarrow \) conformal \(l_k \)
 image of square

\[S_1 \xrightarrow{\text{transition map}} S_2 \]

\[D_1 \xrightarrow{\text{transition map}} D_2 \]
$j_i^{-1} = c_i \hat{e} L_i$

- L_i: maps faces bilinearly to plane
- c_i: wedge \rightarrow conformal image of square

$c_i = g_k \circ l_k$

$g_k = z^{(4/k)}$

$$l_k = \begin{bmatrix}
\cos(\pi / 4) & 0 \\
\cos(\pi / k) & 0 \\
0 & \sin(\pi / 4) \\
0 & \sin(\pi / k)
\end{bmatrix}$$
Partition of Unity

\[\eta(t) \in C^\infty \]

\[\eta(t) + \eta(1 - t) = 1 \]

\[w_i(m) = f_i(\mathbf{j}_i^{-1}(m)) \]
Geometry

- Polynomial fit based on least squares
- Use subdivision to generate points to fit surface
 - Subdivide twice & gather points in interior
 - $12k+1$ 3D pts: s_i

- In the chart
 - $12k+1$ chart pts
Geometry

- Want f s.t. $\min \left(|f(x_i) - s_i| \right)$
- Least squares polynomial fitting

Degree: $d = \min(14, K+1)$,
Nr of monomials with degree $\leq d$: $N = \frac{(d+1)(d+2)}{2}$
Nr of data points: $M = 12k+1$

Define $U = \begin{bmatrix} N \\ M \end{bmatrix}$

Minimizing $\|Ua-s\|^2$

Let $a = Bs$. Then minimize $\|UBs-s\|^2 \rightarrow UB = I \rightarrow a = U^+s$
What has been done?

- Implementation for C^∞ closed surfaces by Lexing Ying as part of PhD thesis

(To appear, SIGGRAPH 04)
Contributions

- C^{∞} surfaces with boundaries
 - Smooth Boundaries
 - Convex and Concave Corners

- C^k surfaces based on spline fitting
 - Closed Surfaces
 - Smooth Boundaries
 - Convex and Concave Corners
 - C^k Blending Functions
\(C^{\text{inf}} : \) Smooth Boundaries

- Charts and Transition Maps
 - Charts:
 - Domain half curved star
 - Overlap 1 wedge
 - Transition maps:
 \[
 j_i^{-1} = c_i \circ L_i, \quad c_i = g_k \circ l_k
 \]

\[
 g_k = z \left(\frac{4}{2^k} \right) = z \left(\frac{2}{k} \right) \]

\[
 l_k = \begin{bmatrix}
 \cos(\pi/4) & 0 \\
 \cos(\pi/2k) & 0 \\
 0 & \sin(\pi/4) \\
 0 & \sin(\pi/2k)
\end{bmatrix}
\]

- Partition of Unity - Exactly the same (per wedge)
C^{\inf}: Smooth Boundaries

- **Geometry**
 - Subdivision: $M = 12k+4$
 - Least Squares – 2 Approaches

- **Global system**

 \[f = \sum_{j=0}^{n-1} a_j p_j \]

 \[a = Bs \text{ s.t. } BU = I \quad \Rightarrow \quad a = U^+ s \]

- **Independent Boundary**

\[
BU = \begin{pmatrix}
 B_1 & B_2 \\
 0 & B_3
 \end{pmatrix}
\begin{pmatrix}
 12k-3 \\
 7
 \end{pmatrix}
\begin{pmatrix}
 N' & Nu
 \end{pmatrix}
= \begin{pmatrix}
 1 & 0 \\
 0 & 1
 \end{pmatrix}
\begin{pmatrix}
 B_1 U_1 = I \\
 B_1 U_2 + B_2 U_3 = 0 \\
 B_3 U_3 = I
 \end{pmatrix}
\]
Results
Our Surface vs. Catmull-Clark
Global vs. Independent Boundary
C^{∞}: Corners

- Concave and Convex Corners need to be treated separately:

 No smooth non-degenerate map between

 ➔ Need two different sets of charts and transition functions

 ➔ Use the modified concave corner rules (the flatness parameter from Biermann, et al) in subdivision step
C^∞: Corners

Convex Charts

Transition Maps

$$g_k = z^{(4/4)k} = z^{(1/k)}$$

$$l_k = \begin{bmatrix} \frac{\cos(\pi/4)}{\cos(\pi/4k)} & 0 \\ \sin(\pi/4) & \sin(\pi/4k) \end{bmatrix}$$

Concave Charts

Transition Maps

$$g_k = z^{(3*4/4)k} = z^{(3/k)}$$

$$l_k = \begin{bmatrix} \frac{\cos(\pi/4)}{\cos(3\pi/4k)} & 0 \\ \sin(\pi/4) & \sin(3\pi/4k) \end{bmatrix}$$
C^\text{inf}: Corners (Convex & Concave)

Geometry:

\[M = 12k + 4 \text{ data pts} \]

- **Global System**— exactly the same as \(C^\text{inf} \) boundary
- **Independent Boundary:**

\[
\begin{align*}
\mathbf{B} \mathbf{U} &= \mathbf{N}' \\
N'(u,v,1) &= \begin{bmatrix} B1 & B2 & 12k-3 \\ 0 & B3 & 7 \end{bmatrix} \\
N'(u,v,1) &= \begin{bmatrix} U1 & U2 & 7 \\ 0 & U3 & 12k-3 \end{bmatrix}
\end{align*}
\]

\[
\begin{bmatrix}
1 & 0 \\
0 & 1 \\
\end{bmatrix}
\]

\[
\begin{aligned}
B_1 U_1 &= 1 \\
B_1 U_2 + B_2 U_3 &= 0 \\
B_3 U_3 &= 1
\end{aligned}
\]
Results: Convex

Val 2

Val 5

Val 3
Results: Concave

Indep. Boun with flatness

Both convex and concave corners

Val 3
Global
No flatness
Catmull-Clark vs. Our Surface
C^k Embedding

Same manifold different embedding

Why do we want C^k?

Higher derivatives of C^∞ surfaces too high
\(C^k \) Embedding

- All charts and transition maps are the same as those of \(C^{\text{inf}} \) surfaces.

- The only changes are:
 - Partition of Unity
 - Spline basis functions of degree \(k+1 \)
 - Geometry
$C^k : \text{Closed Surfaces}$

- 12k+1 data pts = S
- Fit a grid around

 \[nrgrid^2 \sim 12k+1 \]

 \[f(x, y, c) = \sum_{i=-k}^{p+k} \sum_{j=-k}^{q+k} N_i(x)N_j(y)p_{ij} \]

 \[S = MP \]

Solve for ctrl points:

\[P = M^+ S \]

(M is 12k+1 x (nrgrid)2)
C^k : Problems and Solutions

Problem 1:
Since data points not uniformly placed, some control points (near corners) may be way too off.

Solution A:
Use an extra ring of points.
(Fit to 20k+1 pts s.t. bad behavior will happen farther away from the part of the chart that we need)
Problem 1:
Since data points not uniformly placed, some control points (near corners) may be way too off.

Solution A:
Use an extra ring of points.
(Fit to 20k+1 pts s.t. bad behavior will happen farther away from the part of the chart that we need)
C^k : Problems and Solutions

Problem 1:
Since data points not uniformly placed, some control points (near corners) may be way too off.

Solution B:
Add “smoothness” constraints
For each interior grid point, use “weighted” 2^{nd} order finite differences:

```
  1   -2   1
-2   4  -2
  1   -2   1
```
Problem 2:
For higher k, number of “extra” grid points may be too large \rightarrow underdetermined system

Solution:
In this case, the whole chart is contained in one polynomial patch.
\Rightarrow Already C^{∞}.
Problem 2:

For higher k, number of “extra” grid points may be too large → underdetermined system

Solution:

In this case, the whole chart is contained in one polynomial patch. ⇒ Already C^{∞}.

Lower the degree (k) until the system becomes over-determined again.
The geometry changes slightly with increasing degree but the surface quality is maintained
Polynomials

Max Value 2.581 3.71911 5.65685 2055.46

Splines(C⁵)

Max Value 1.89508 1.79864 3.98121 1059.81
Some more complex examples...
$C^k : \text{Smooth Boundary & Corners}$

- Only have the “global system” for all the following so far.
 - Boundary
 - Concave
 - Convex

In each case, fit the relevant chart onto a grid and repeat same procedure
Results: Boundary

C-5, Val 6

Val 10
Results: Convex
Results: Concave
What’s Next

- Interior ctrl point independent boundary and corners for C^k surfaces
- Efficiency of the implementation needs to be improved (splines)
- Issues that need to be resolved:
 - C-Inf, concave corner, valance 2
 - Convex vertices for splines of higher degree

\[\frac{2\pi}{3}\]
\[\frac{3\pi}{4}\]
Conclusions

- C^{∞} surface construction based on manifolds can be extended to surfaces with boundaries and corners.
- C^k surface construction with/out boundaries and corners based on manifolds possible through use of splines.
- If C^k is needed instead of C^{∞}, splines work well. However:
 - Implementation is more complicated
 - Tuning plays a big role
- Visual quality of splines better than that of polynomial near higher valence vertices