/*
You have my permission to use freely, as long as you keep the attribution. - Ken Perlin
If you want to create a spline path, you can make a one dimensional array of such objects.
If you want to create a spline surface, you can make a two dimensional array of such objects.
Cubic(double[] G)Given four geometric values over t, calculate cubic coefficients.double eval(double t)Given a point in the interval t = [0 ... 1], return a value.Algorithm:f(t) = T M GT, where:T = (t3 t2 t 1) ,The constructor Cubic(G) calculates the matrix C = M GT
M is the basis matrix.The method eval(t) calculates the value T C
Cubic(double[][] G)Given 4×4 geometric values over u×v, calculate bicubic coefficients.double eval(double u, double v)Given a point in the square [0 ... 1] × [0 ... 1], return a value.Algorithm:f(u,v) = U M G MT VT , where:U = (u3 u2 u 1) ,The constructor Cubic(G) calculates the matrix C = M G MT
V = (v3 v2 v 1) ,
M is the basis matrix.The method eval(u,v) calculates the value U C VT
*/
public class Cubic
{
public static final double[][] BEZIER = { // Bezier basis matrix
{-1 , 3 , -3 , 1 },
{ 3 , -6 , 3 , 0 },
{-3 , 3 , 0 , 0 },
{ 1 , 0 , 0 , 0 }
};
public static final double[][] BSPLINE = { // BSpline basis matrix
{-1./6 , 3./6 , -3./6 , 1./6 },
{ 3./6 , -6./6 , 3./6 , 0. },
{-3./6 , 0. , 3./6 , 0. },
{ 1./6 , 4./6 , 1./6 , 0. }
};
public static final double[][] CATMULL_ROM = { // Catmull-Rom basis matrix
{-0.5 , 1.5 , -1.5 , 0.5 },
{ 1 , -2.5 , 2 , -0.5 },
{-0.5 , 0 , 0.5 , 0 },
{ 0 , 1 , 0 , 0 }
};
public static final double[][] HERMITE = { // Hermite basis matrix
{ 2 , -2 , 1 , 1 },
{-3 , 3 , -2 , -1 },
{ 0 , 0 , 1 , 0 },
{ 1 , 0 , 0 , 0 }
};
double a, b, c, d; // cubic coefficients vector
Cubic(double[][] M, double[] G) {
a = b = c = d;
for (int k = 0 ; k < 4 ; k++) { // (a,b,c,d) = M G
a += M[0][k] * G[k];
b += M[1][k] * G[k];
c += M[2][k] * G[k];
d += M[3][k] * G[k];
}
}
public double eval(double t) {
return t * (t * (t * a + b) + c) + d;
}
double[][] C = new double[4][4]; // bicubic coefficients matrix
double[][] T = new double[4][4]; // scratch matrix
Cubic(double[][] M, double[][] G) {
for (int i = 0 ; i < 4 ; i++) // T = G MT
for (int j = 0 ; j < 4 ; j++)
for (int k = 0 ; k < 4 ; k++)
T[i][j] += G[i][k] * M[j][k];
for (int i = 0 ; i < 4 ; i++) // C = M T
for (int j = 0 ; j < 4 ; j++)
for (int k = 0 ; k < 4 ; k++)
C[i][j] += M[i][k] * T[k][j];
}
double[] C3 = C[0], C2 = C[1], C1 = C[2], C0 = C[3];
public double eval(double u, double v) {
return u * (u * (u * (v * (v * (v * C3[0] + C3[1]) + C3[2]) + C3[3])
+ (v * (v * (v * C2[0] + C2[1]) + C2[2]) + C2[3]))
+ (v * (v * (v * C1[0] + C1[1]) + C1[2]) + C1[3]))
+ (v * (v * (v * C0[0] + C0[1]) + C0[2]) + C0[3]);
}
}