Dynamic Map Labeling
Ken Been, Eli Daiches & Chee Yap
Dynamic maps allow panning and zooming.

Problem: Selecting and placing labels on a dynamic map.

vs. Static Label Placement

- 2D => 3D
- HCI
- performance requirements
Basic cartographic rules for map labels:
• No overlap among labels and features
• Each label identifies a unique feature
• Each label optimum among alternatives
Label Placement

- **Static Case:** Transformation π of a box in label-coordinates into world coordinates

- **Dynamic Case:** A parameterized family of transformations $\Pi = \{\pi_s : s \in [\lambda_0, \lambda_h]\}$

 \downarrow

 Zoom levels
 lowest to highest
Label Placement

Given a set of labels S_0

Two-step Process

1. Select a subset $S \subseteq S_0$

2. Place the labels S on the map

Interactive speeds non-trivial!
Label Placement

Given a set of labels S_0

0. label-filtering $S' \subseteq S_0$

Two-step Process

1. Select a subset $S \subseteq S'$

2. Place the labels S on the map

Interactive speeds non-trivial!
Previous Work

• 1980s - static placements

• 1990s - interactive
 - show label when mouse over
 - draw lines from labels to features around mouse

• Petzold, et al.(96, 03)
 - Preprocessing phase + Interaction phase
 - Label selection based on priorities
 - realtime achievable

• Zhang & Harrie(04)
 - selection and placement for points and lines.
 - not realtime
Label Consistency

Label Size Invariance Property: Each label on screen has a fixed size that is invariant under zooming.

(D1) Labels should not vanish when zooming in, and not appear when zooming out.

label priority A>B>C, zoom levels $s_1 < s_2 < s_3$
Label Consistency

Label Size Invariance Property: Each label on screen has a fixed size that is invariant under zooming.

(D1) Labels should not vanish when zooming in, and not appear when zooming out.

(D2) The distance a map feature f and position of its label L should vary monotonically.
Label Consistency

Label Size Invariance Property: Each label on screen has a fixed size that is invariant under zooming.

(D1) Labels should not vanish when zooming in, and not appear when zooming out.

(D2) The distance a map feature f and position of its label L should vary monotonically.

(D3) Labels must not vanish or appear during panning except through sliding in/out of view.
Label Consistency

Label Size Invariance Property: Each label on screen has a fixed size that is invariant under zooming.

(D1) Labels should not vanish when zooming in, and not appear when zooming out.

(D2) The distance a map feature f and position of its label L should vary monotonically.

(D3) Labels must not vanish or appear during panning except through sliding in/out of view.

(D4) Display of any label is a function of state (x,y,s) so not dependent on how the view was obtained.
Dynamic Map Model

• **View**
 - shape = \(w \times h \)
 - position = center point \((x,y)\)
 - zoom level = map scale ratio \(s:1 \)

• **Map features** - point, line, area

• **Label** \(L \)
 - map feature \(\phi(L) \)
 - box(L)
 - live range \(R(L) \subseteq [0, \infty] \Rightarrow R(L)=[\lambda_i,\lambda_j], \ i<j \)
Label - World - Screen Coordinate Systems

Map domain D_0:

Screen domain W_0:

π is a transformation mapping labels to world coordinates, and $\tau(x, y, s)$ is a transformation that maps world coordinates to screen coordinates.

Note that the label L is placed at $(-1, 1)$ on the screen, and its box $Box(L)$ is at $(-1, -1)$.

This transformation is used to ensure that the label's placement is preserved under different transformations.
Dynamic Labeling Model

Allowable transformation:
composition of $T(e,f)$, $R(\varphi)$, $D(s)$

Static Placement:
allowable transformation from label coords to world coords
Valid Placement π

If L a point label

(P1) π is a translation composed with dilation

(P2) Interior of $\pi(\text{box}(L))$ does not intersect $\phi(L)$

(P3) Distance b/n $\pi(\text{box}(L))$ and $\phi(L) \leq s d_0$.
Valid Placement π

If L a area label

(A1) π is a translation composed with dilation

(A2) Interior of $\pi(\text{box}(L))$ must intersect $\phi(L)$
Valid Placement π

If L a line label

(L1) π is allowable

(L2) Interior of $\pi(\text{box}(L))$ does not intersect $\phi(L)$

(L3) Distance b/n $\pi(\text{box}(L))$ and $\phi(L)$ $\leq s d_1$. This distance is also achieved at all points on an interval with size at least $1/2$ the length of $\text{Box}(L)$
For simultaneous placements \(\{\pi^L : L \in S\} \), label-label overlap and label-point feature overlap not allowed

Dynamic Placement: Family \(\Pi = \{\pi_s : s \in [\lambda_0, \lambda_h]\} \) of static placements, s.t.

1) \(\det(\pi_s) = s^2 \)

2) \(\pi_s \) varies continuously with \(s \).
Invariant Point Placement

Dynamic placement represented by \((p,q,\varphi)\)

For every zoom level \(s\):

\[
\pi_s = T(p)R(\varphi)D(s)T(-q)
\]

\[
\pi_s(q) = p
\]

Boundary placement
Geometric View - cones in 3D

in 1D:

\[
\begin{align*}
L_1 & \quad L_2 \quad L_3 \quad L_4 \\
\text{view area} & \\
\end{align*}
\]
New Approach

• S_0: set of all labels

• **Pre-Processing** - allows no conflict computation during interactive phase

 (1) Compute a set of dynamic placements

 $$\Pi^* = \{\Pi^L: L \in S_0\}$$

 (2) Compute a subinterval $A(L) \subseteq R(L)$, $\forall L \in S_0$

 Active Range

 L is active if the current zoom level $s \in A(L)$
- Active Ranges reduces cones to truncated cones
- in 1D: trapezoids.

Non-intersecting trapz = non overlapping labels
New Approach

- Interactive Phase
 For each L visible in the current view
 If Active then Place

\[S_w \subseteq S_0 \text{ be set of labels that intersect } W(x,y,s) \]
\[S_a \subseteq S_0 \text{ be set of labels active at level } s \]
\[S_v = S_w \cap S_a, \text{ visible labels} \]

a) Filter \(S_w \) from \(S_0 \) \} Slow
b) Select \(S_v \) from \(S_w \)
Solution: Assume every active range has form

\[A(L) = [0,h] \]

Goal: Produce \(S_w \) as a list sorted by \(h \) s.t. traversal of list until label \(L \) with \(h_L < s = S_v \)

Method:

• Divide \(D_0 \) into a grid of buckets

• Assign each label to the bucket that contains the invariant point.

• In each bucket, sort labels by \(h_L \)

• Store buckets in a hash table
Complexity of Optimal Active Range Selection (Pre-Processing)

Optimization Problem: \[|A| := \sum_{i=1}^{n} |I_i| \rightarrow \max \]

\(I_i \): intervals in \(s \) (cone truncation) w/ no overlap

No solution known even for 1D simple active range optimization \((I_i = [0,h] \text{ (full cones)})\)

= height maximization problem on graphs
Height Maximization on Graphs

\(G(V,E)\) undirected with functions \(H:V \rightarrow \mathbb{R}_{\geq 0}\) and \(W:V \rightarrow \mathbb{R}_{\geq 0}\)

A height function \((H)\) is compatible if:
1. \(h(v) \leq H(v)\)
2. for each edge \(e(u,v)\), \(h(u) > W(e) \Rightarrow h(v) \leq W(e)\)

Problem: Compute a height function that maximizes the sum

\[|A| := \sum_{v \in V} A(v) \]

Reduction:
- \(V = \text{cones}, \ (u,v) \in E \iff u \cap v \neq \emptyset\)
- \(W(u,v) = \text{height at which } u,v \text{ intersects}\)
- \(H(v) = \text{height of cone } v\)
Lemma:

Given an instance of height maximization, and a constant k, it is NP-hard to decide if there exists a compatible height function A s.t. $|A| \geq k$

Then?
Lemma:

Given an instance of height maximization, and a constant k, it is NP-hard to decide if there exists a compatible height function A s.t. $|A| \geq k$

Then?

Assign Priorities!
Prioritized Labels

- Unique $C_i \neq C_j \Rightarrow P(C_i) \neq P(C_j)$
- $A(C_i) = h_i$ means active range for $C_i = [0,h_i]$
- $C_i \setminus h_i$ is truncated cone $C_i \setminus [0,h_i]$
- A maximal if
 1. C_i/h_i blocked by $C_j/h_j \Rightarrow P(C_j) > P(C_i)$
 2. For all C_i, either C_i blocked or $A(C_i) = R(L_i)$

Lemma: For any set of invariant point placements with priority P, maximal non-overlapping active range function A is unique

Using conflict graphs - can be computed in $O(n+m)$
Conclusions

• Theoretical
 ✓ Formulated dynamic labeling problem
 ✓ Desiderata (D1-D4) for consistency
 ✓ Invariant point labeling
• Algorithmic
 ✓ Active range computation efficient in interaction phase and satisfies consistency
• Practical
 ✓ Implementation full scale, web demo (line features)