A massively parallel adaptive fast-multipole method
on heterogeneous architectures

Ilya Lashuk*, Aparna Chandramowlishwaran®, Harper Langston®,
Tuan-Anh Nguyen®, Rahul Sampath*, Aashay Shringarpure®,
Richard Vuduc*, Lexing YingT, Denis Zorini, and George Biros*
* Georgia Institute of Technology, Atlanta, GA 30332
f University of Texas at Austin, Austin, TX 78712
I New York University, New York, NY 10002

ilashuk@cc.gatech.edu,

richie@cc.gatech.edu,

Abstract—We present new scalable algorithms and a new
implementation of our Kkernel-independent fast multipole
method (Ying et al. ACM/IEEE SC ’03), in which we employ
both distributed memory parallelism (via MPI) and shared
memory/streaming parallelism (via GPU acceleration) to
rapidly evaluate two-body non-oscillatory potentials. On
traditional CPU-only systems, our implementation scales
well up to 30 billion unknowns on 65K cores (AMD/CRAY-
based Kraken system at NSF/NICS) for highly non-uniform
point distributions. On GPU-enabled systems, we achieve
30x speedup for problems of up to 256 million points on
256 GPUs (Lincoln at NSF/NCSA) over a comparable CPU-
only based implementations.

We achieve scalability to such extreme core counts by
adopting a new approach to scalable MPI-based tree con-
struction and partitioning, and a new reduction algorithm
for the evaluation phase. For the sub-components of the eval-
uation phase (the direct- and approximate-interactions, the
target evaluation, and the source-to-multipole translations),
we use NVIDIA’s CUDA framework for GPU acceleration to
achieve excellent performance. To do so requires carefully
constructed data structure transformations, which we de-
scribe in the paper and whose cost we show is minor. Taken
together, these components show promise for ultrascalable
FMM in the petascale era and beyond.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage,
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SC09 November 14-20, 2009, Portland, Oregon, USA

(c) 2009 ACM 978-1-60558-744-9/09/11 $10.00

aparnal@cc.gatech.edu,
tuananh.nguyen@gatech.edu rahul.sampath@gmail.com,
lexing@math.utexas.edu,

harper@cc.gatech.edu,
aashay.shringarpure@gmail.com,
dzorin@cs.nyu.edu, gbiros@acm.org

I. INTRODUCTION

We consider the problem of rapidly evaluating sums of
the form,

N
Flai) =3 K(zi,y;)s(y), i=1,...,N,
j=1
or simply
N
fi:ZKiij, t1=1,...,N, (D
j=1

which expresses a need to compute O(N?) interactions
in a system of N particles. We refer to f as the “po-
tential”, s as the “density”, r as the target points, y
as the source points, and K as the interaction kernel.
For example, for electrostatic or gravitational interactions

compute pairwise interactions in a particle system, arise
throughout mathematical physics and are often related to
the fundamental solutions (kernels) of partial differential
equations (PDEs).

By “rapid evaluation,” we imply an asymptotic time
complexity of O(N), in contrast to a direct evaluation
requiring O(N?) operations. This speedup is possible for
a large class of kernels and can be performed using ideas
based on the original fast multipole method algorithm of
Greengard and Rokhlin [6]. The trade-off is that FMM
algorithms introduce an approximation error. The constant
in the complexity estimate is related to the desired accu-
racy of the approximation and depends on the details of
the algorithm.

. Such problems, in which we wish to

Outline of the method. This paper extends prior work
by us and others by developing and evaluating parallel
implementation of the FMM on hybrid distributed memory
CPU/GPU architectures. It uses three well-known algorith-
mic frameworks:

o Sequential FMM method. Our implementation is
based on the kernel independent FMM [20], [21], and
is particularly effective for non-oscillatory kernels.

o Distributed memory parallelism using MPI: Our al-
gorithms use space filling curves and the notion of
Local Essential Trees (LET) [18]. For each process,
the LET is the subtree of the global FMM tree that
this process needs in order to evaluate the interaction
on the particles it owns.

o Streaming parallelism: We use GPU acceleration of
the per-octant calculation of the FMM operators.
Our implementations employ the NVIDIA CUDA
programming model [1].

These three frameworks form the foundation of our
method, which can be summarized as follows: given the
points (equi-distributed in an arbitrary way across MPI
processes) and their associated source densities, we seek
to compute the potential at each point (for simplicity
in this paper we assume that source and target points
coincide). First, we sort the points in Morton ordering and
redistribute them so that each process owns a contiguous
chunk of the sorted array. Second, we create the LET
for each process in parallel. Third, we evaluate the sums
using the LETs across MPI processes and using GPU
acceleration independently within each process. In our
scheme, each MPI process is assumed to have private
access to an accelerator. We have not employed CPU
multithreading within an MPI process.

Contributions. Starting from the frameworks of FMM,

MPI/GPU, and LET, we introduce the following algorith-
mic improvements:

e« We give a new parallel tree construction algorithm
that is based on our work for linear octrees for finite
elements [16]. In our previous FMM implementation,
the tree construction was over 15 times slower than
the evaluation part, on 3000 cores [21]. By contrast,
experimental results on up to 65,536 cores show that
the tree construction in our new implementation is
only 10% of the evaluation phase.

o We present a novel all-reduce-on-hypercube scheme
for the communication during the evaluation
phase. Our previous implementations, based on
alltoallv () exchanges or unoptimized point-

to-point non-blocking communication, greatly taxed
MPI system resources for problems with more than
32K cores. We give theoretical and experimental
evidence that shows that our new implementation
circumvents this bottleneck.

o We integrate GPU acceleration of the direct- and
approximate-interaction evaluations in the FMM
phase. Unlike MPI- or GPU-only implementations,
here we need to translate between different data
structures. We use linear arrays for the tree con-
struction, pointers for the LETs, and a streaming-
friendly data structure for the GPU; the translation
has a somewhat high memory footprint, but we show
that it can be accomplished efficiently. Finally, the
GPU acceleration, which is specific to our FMM
implementation, is novel.

We have conducted weak and strong scalability studies on
the NSF Kraken system using up to 30 billion unknowns
on 65K cores, for a highly nonuniform (over 20 levels
difference between coarse and fine leaves) tree; and we
have tested the algorithm on up to 256 GPUs (NVIDIA
Tesla S1070) for 256 million unknowns.

Limitations. Our new implementation has certain lim-
itations. First, the GPU acceleration is implemented in
single precision (the rest of the code can work in both
single and double precision). Second, we do not con-
sider GPU acceleration of the entire computation, and in
particular omit the tree-construction and the certain parts
for the evaluation phase (we discuss this later). Third, to
load balance we use Morton curves and work estimates
(at the leave-level), whereas more sophisticated schemes
could be used. Finally, we do not thoroughly overlap
computation and communication; in the GPU-accelerated
version, we do not presently invoke the GPU-accelerated
phases fully asynchronously, and therefore do not exploit
the possibility of overlapping GPU evaluation with work
on the CPU.

Related work. To our knowledge, no FMM that sup-
ports highly nonuniform distribution of multi-billion parti-
cles has been parallelized and scaled successfully beyond
3000 processes. Most implementations, including ours, are
based on the work of Warren and Salmon [18]. In Ying et
al. [21] (Table 4.2), the time consumed by the tree gener-
ation for 2048 processes is already unsatisfactory. Other
recent publications about parallel FMM, e.g., Kurzak [10]
and Ogata [11], do not handle nonuniform distributions
of particles and do not report results for more than 1024
processes. See Ying et al. for a review of the literature

prior to 2003 [21]. Additional surveys and work on tree-
partitioning, efficient data structures, and discussions on
the theory of partitioning and complexity can be found
elsewhere [8], [15], [17].

Several groups have been working on GPU acceleration.
For a review and details on a particular GPU implementa-
tion (without MPI), see Gumerov et al. [7], where 30-60x
speedups were achieved on the evaluation phase. Other
authors consider GPU-accelerated tree construction [2].
NVIDIA has an N-body example for direct summation
that can be used as template for most GPU implemen-
tations [1]. To our knowledge, the only heterogeneous
attempt for N-body algorithms can be found in Phillips,
et al. [12], but the problem sizes considered in that work
were very small (98k particles).

II. HIGH-LEVEL DESCRIPTION OF THE FAST
MULTIPOLE ALGORITHM

Here, we describe the sequential FMM without any
details on how the different parameters need to be chosen
for a given numerical accuracy. We refer to [20] and the
references therein for further details. As mentioned before,
we assume that the set of source points y; and the set of
the target points x; coincide. In Table I, we introduce the
notation used throughout the rest of the paper.

Fig. 1. FMM lists. Here we show a canonical example of the
UV, W, and X lists in two dimensions for a tree node B.
One can verify that I(B) is inside the domain enclosed

by C(P(B)).

The FMM tree 1" can be thought of as constructed in a
top-down fashion (actual parallel algorithms are discussed

a, octants
4 tree level
q maximum number of points/octant

x target points
y source points

s densities at the source points
f potential at the target points
U upward densities

d downward densities

Linear operators

direct source density-to-target potential
source-to-up density

up-to-up density

down-to-down density

down density-to-target potential
source-to-down density

up density-to-target potential
up-to-down density

OHIOEHT G NR

ctant lists

the global FMM tree

all leaf octants
) parent octant of 3 () for root of T')
) ancestor octants of (3
) children octants of 3 () for 8 € T)
) descendant octants of 5 in T’
adjacent octants to 3, same level
adjacent octants to 3 (arbitrary level)
a € L adjacent to § (note:3 € U(B))

CIPSTE
@

C(0) (colleagues)

J(B)
U-list:ae € U(0)

Vlista € V(B) a e KC(P(B)\C(B)

W-list:ae € W(B) € D(C(B))\ J(B), Pla) € J(58)

X-lista € X(B) iff 5 € W(a)

Z(B) (interaction) V(3) UU(B) UW(B) U X(B)
TABLE 1

NorarioN. The lists U(3) and W([3) are defined only for
B € L, whereas V(3), X () are defined for all leaf and
non-leaf octants . Operators P, A, K, D,C,J may take
as an argument a single octant or a list of octants. Note
that o € W() need not be a leaf octant; conversely,
since W(3) exists only when (3 € L, a € X([3) implies
that o € L. We say that « is adjacent to (3 if § and o
share a vertex, an edge, or a face. Also, U,D depend
only on the box, T depends on pair of boxes and E, S
depend on targets and sources. See Figure 1, for an
example of the U,V,W, and X lists in two dimensions.

below). Consider a user-specified parameter g, which sets
the maximum allowable number of points per box. We
start at the unit cube (suppose it contains all the points),
and we subdivide an octant if it contains more than ¢
points.

For each octant we create four lists of octants, the
so called U-,V-,W- and X-list. Octants in these lists
“interact” (i.e., are coupled) with /3 in the course of FMM

computation. For a leaf octant (3, the U-list of 3 consists
of all leaf octants adjacent to 3, including S itself. (We
say that « is adjacent to 3 if § and « share a vertex, an
edge, or a face.) The V-list of an octant 3 (leaf or non-leaf)
consists of those children of the colleagues of 3’s parent
octant, P(3), which are not adjacent to 3. The W-list is
only created for a leaf octant 5 and contains an octant « if
and only if « is a descendant of a colleague of 3, « is not
adjacent to /3, and the parent of « is adjacent to (3. The
X-list of an octant 3 consists of those octants « which
have (8 on their W-list. These definitions are summarized
in the bottom of Table 1.

For each octant § € T, we store its level ¢, and two
vectors v and d. u is to be understood as a compressed
approximate representation of the potential generated by
the densities in (3. This representation is sufficiently ac-
curate only if the evaluation point is outside the volume
covered by B and the colleagues of 3. The d vector
is to be understood as some compressed approximate
representation of the potential generated by the densities
outside the volume covered by 3 and colleagues of 3. This
approximate representation is sufficiently accurate only if
the evaluation point is enclosed by (3.

For leaf octants (6 € L), we also store z, s, and f,
referring to Table I for definitions. Table I also introduces
several linear operators. These are typically small matrices
(dimension between 100-1000) whose precise interpre-
tation depends on the particular FMM implementation.
Their exact definition is beyond the scope of this paper and
not necessary in our context. We simply note that the main
difficulty in FMM is in deriving the efficient mathemat-
ical representation for these operators in order to obtain
algorithmic efficiency without significantly compromising
accuracy [20]. Let us also remark that the algorithm sup-
ports several other constructions of translation operators,
including analytic methods described in [4].

Given the above definitions, approximately evaluating
the sum in Equation (1) involves an upward computation
pass of 7', followed by a downward computation pass of
T, seen more specifically in Algorithm 1.

Let us clarify that all the computations in Algorithm
1 can be viewed as simple matrix-vector multiplications
(e.g., ug = Sgsg means convert the source densities s
of the leaf octant (3 to its up-densities v by multiplying
S with s; the subscript notations in Algorithm 1 denote
octant dependence).

ALGORITHM I: FMM

Input: {z;,y;, s}, octree
Output: {fi}Y,

/I APPROXIMATE INTERACTIONS
/I (1) S2U: source-to-up step
VB e L: UQZSBS,@
/1 (2) U2U: up-to-up step (upward)
Postorder traversal of T
Ve eT: Up(g)+= Ugug;
/I (3a) VLI: V-list step

VBeT: YaeV(F): dsgt+=Tga ta;
/I (3b) XLI: X-list step
VBeT: Yae X(B): dsg+= Qpa Sa;

/I (4) D2D: down-to-down step (downward)
Preorder traversal of T
VB e T : dst+= Dpp(s) dp(p);
/I (5a) WLI: W-list step
Ve L: Yae W(B): fs+=Rgpata;
/I (5b) D2T: down-to-targets step
VB e L: fg—F: Eg dg;

//DIRECT INTERACTIONS
// ULI: U-list step (direct sum)
VBeL: Yacls: fg+=KgaqSa;

A. Parallelizing the evaluation phase

Here, we will make some generic observations about the
concurrency of the evaluation phase. These observations
are valid for many types of FMM. (This not the case for
the tree construction.)

Algorithm 1 is presented as a sequential algorithm.
The discussion of its parallelization can be separated to
distributed and shared memory viewpoints. These view-
points can be then connected to MPI, OpenMP, and GPU
application programming interfaces.

There are multiple levels of concurrency in FMM:
across steps (e.g., the S2U and ULI steps have no de-
pendencies), within steps (e.g., a reduction on octants «
in V-list of an octant 3 during the VLI step), and in
the per-octant calculations (e.g., vectorizing the gq5a
calculation in the XLI step).!

The generic dependencies of the calculations outlined
in Algorithm 1 are as follows: The APPROXIMATE IN-

Tn fact, one can expose more concurrency by using pipelining
(e.g., one can pipeline the S2U, U2U, and VLI steps to expose more
parallelism). However, we do not take advantage of this concurrency
in this work as such an approach reduces the modularity and generality
of the implementation.

TERACTIONS and DIRECT INTERACTIONS parts can be
executed concurrently. For the approximate interaction
calculations, the order of the steps denotes dependencies,
e.g., step (2) must start after step (1) has been completed.
Steps (3a) and (3b) can be executed in any order. How-
ever, concurrent execution of steps (3a) and (3b) requires
concurrent write with accumulation. This is also true for
the steps (5a) and (5b), that is they are independent up to
concurrent writes.

Our overall strategy is to use MPI-based distributed
memory parallelism (that also addresses the tree con-
struction) to partition the trees into LETs to remove
dependencies between steps (3a)/(5a) and (3b)/(5b) and
by handling the concurrent writes explicitly) and then use
shared-memory based parallelism on GPUs within each
MPI-process to accelerate the direct interactions and steps
(1), (3), (5) of the indirect interactions in Algorithm 1. In
the following sections, we give the details of our approach.

III. DISTRIBUTED MEMORY PARALLELISM

In this section, we present distributed memory algo-
rithms for our FMM method. The main components of
our scheme are (1) the tree construction, in which the
global FMM tree is built and each process receives its
local essential tree and a set of leaves for which it assumes
ownership; and (2) the evaluation, in which each process
evaluates the sum at the points of the leaf octants it owns.
This sum has two components, a direct-interaction (and
exact) evaluation and an approximate-interaction evalua-
tion.

The input consists of the points and their densities. In
our analysis and all of our experiments, these points are
assumed to be equally-distributed randomly across all pro-
cesses. The output of the algorithm is the potential at the
points. The final distribution of the points is determined
by the algorithm.

Before we describe the algorithm we need the following

definition:
Locally essential tree (LET): Given a partition of L
across processes so that Lj is the set of leaf-octants
assigned to the process k (i.e., the potential in these octants
is computed by process k), the LET for process k is
defined as the union of the interaction lists of all owned
leaves and their ancestors:

LET(k) := Uyge[rua(ry)) Z(8)-

The basic idea [18] for a distributed memory implemen-
tation of the FMM algorithm is to partition the leaves of

the FMM tree across processes, construct the LET of each
process and then compute the N-body sum in parallel.
There are two communication intensive phases in this
approach: the first phase is the LET construction and the
second phase is an all-reduce, which is required to ensure
correctness of the approximate interaction computations.
Next, we discuss the main components in these two
phases.

A. Tree construction

In our original implementation of the parallel FMM,
we used a lightweight copy of the entire global tree on
each process. This approach became problematic above
2048 MPI-processes and highly inefficient in the 3000-
processes case. Alternative approaches for tree construc-
tion are well-known, for example [15]. To our knowledge
however, no scalability results for large core counts have
been reported in the literature; hence, it is difficult to
assess the real performance of alternative approaches.
Here, we use a bottom-up variant of those algorithms
that uses infrastructure that we have developed in previous
work in our group for linear finite element octrees [14].

The input in the tree construction are the points. The
output is the local essential tree on each process, which
is subsequently used in the computation, along with geo-
metrical domain decomposition of the unit cube across
processes. The latter is used throughout the algorithm.
The tree construction involves (1) the construction of a
distributed linear complete octree that contains only the
leaf octants; and (2) the construction of the per-process
LETs.

We start by creating the distributed and globally
Morton-sorted array containing all the leaves from
the global tree. To build this array, we use the
PointsToOctree method, which is part of our
DENDRO package, whose description can be found in [16]
(Algorithm 5). This routine generates a distributed linear
octree, which is Morton-order sorted globally.

We should mention that the current version of DEN-
DRO package can, in theory, produce octrees which are
finer than necessary (some octants containing less than ¢
points may be subdivided in specific circumstances). This
is due to the fact that DENDRO was developed for the
case ¢ = 1, and we use it for general q. In practice, we do
not observe any performance problems related to possible
extra subdivisions.

The distribution of the leaves between processes in-
duces a geometric partitioning of the unit cube: each
process controls the volume covered by the leaves it

owns. Each process has complete information about the

(a) finer level of octree (b) coarser level of octree

Fig. 2. Communication of ghost octants. Process 0 sends green
octants to process 1, red octants to process 2, and brown
octants to both 1 and 2. White octants in lower-left corner
are “internal” to process 0 and not sent to anyone. The
procedure is applied to both leaves and non-leaf octants.

overall geometric partitioning (processes communicate via
MPI_AllGather to exchange this information). By (),
we will denote the region “controlled” by process k.

Next, each process adds all ancestor octants to its local
leaves, thus, creating a local tree. The task of exchanging
information about “ghost” octants must still be completed.
Let us introduce the following definitions:

e “Contributor” processes of an octant 8 € T
P.(B) =k e1l...p: [overlaps with Q

e “User” processes of an octant [3:

Pu(B) :=kel...p:C(P(B)) overlaps with .

Let I be the set of octants to which process k con-
tributes and which process &’ uses. Process k sends all oc-
tants in Iy to process k’. Figure 2 provides an illustration
of this process. Then, all processes insert received octants
into their local trees. This concludes the construction of
the per-process LETs. We summarize the construction of
the local essential trees in Algorithm 2.

Remark: Only the leaves of T are assigned “owner-
ship” across processes.

To prove the correctness of the LET construction, we
need to show that for every § € Bj all of the octants
a € I(B) are in the LET of the process k. Indeed, if
a € I(F) then § € Z(«) because the U- and V-lists
are symmetric’ and the union of W and X lists is also
symmetric.

Thus, Z(«) Ny # {0}. Assuming that o € Qj and
k' # k, then a € Iy/i.. Hence, « has been sent to process
k from process k' and has been inserted to LET,. (If
k = k', then o € By, by construction.)

%If an octant o belongs to the U/V-list of octant (3, then octant 3
belongs to the U/V-list of octant a.

ALGORITHM 2: LET CONSTRUCTION

Input: distributed set of points z;
Output: LET on each process k

1. L, = Points20ctree (x) /IMPI
2. By = L UA(Ly)
3. Iy = {ﬁ € By : C(P(,B)) overlaps with Qk/}
4. VK : K #k
Send Iy to process k' //IMPI
Recv Iy, from process k'’ /IMPI

Insert I} in By
5. Return By,

In the last step of Algorithm 2, every process indepen-
dently builds U,V,W, and X-lists for those octants in its
LET which enclose the local points (where the potential is
to be evaluated). All necessary octants are already present
in the LET, and no further communication is required in
this step.

B. Load balancing

Work-per-leaf-based partitioning: Assigning each
process an equal chunk of leaves may lead to a substan-
tial load imbalance during the interaction evaluation for
nonuniform octrees. In order to overcome this difficulty,
we use the following load-balancing algorithm.

After the LET setup, each leaf is assigned a weight,
based on the computational work associated with its
U,V,W, and X-lists (which are already built at this point).
Then, we repartition the leaves to ensure that total weight
of the leaves owned by each process is approximately
equal. We use Algorithm 1 from [16] to perform this
repartitioning in parallel. Note that similarly to the pre-
vious section, each process gets a contiguous chunk of
global (distributed) Morton-sorted array of leaves. In the
final step, we re-build the LET and the U,V,W, and X-lists
on each process.

Note that we repartition the leaves based solely on
work balance ignoring the communication costs. Such an
approach is suboptimal, but is not expensive to compute
and works reasonably well in practice. In addition to leaf-
based partitioning, the partitioning at a coarser level can
also be considered; however, we have not tried it at this
point.

C. FMM evaluation

Three communication steps are required for the poten-
tial evaluation. The first is to communicate the exact den-

sities for direct calculation. This communication is “local”
in a sense that each process typically communicates only
with its “geometrical” neighbors. Thus a straightforward
implementation (say, MPI_Isend) is acceptable.

The second communication step is to sum up the
upward densities of all the contributors of each octant.
The third step is to “broadcast” the complete densities to
the users of each octant. These two steps must take place
after the U2U step (bottom-up traversal) in which the local
up-densities have been computed and before the VLI and
XLI steps can take place.

In our previous work, we used a simple approach for
these two communication steps. Each octant (both leaf
and non-leaf) was assigned an owner process. The owner
received the partial densities from all the contributors,
summed them up and sent the result to each user. Such an
approach worked well on up to 32K processes, but failed
in the 64K case. Note that octants close to the root of the
tree have numerous contributors and even more users (up
to all the processes). This suggests using some tree-based
reduction and broadcast scheme.

Algorithm 3 describes a communication procedure that
we use now. The procedure combines second and third
steps mentioned above. Remarks:

We assume that the size of the MPI communicator is a
power of two. We term an octant to be ‘“shared”, if the
union of its contributors P, and users P, contains more
than one process.

Step 2: us and u. define a range of processes (inclusive),
to which octants sent to s may be eventually broadcasted.
There is no need sending to s octants that are not destined
for ug, ..
Step 5: g5 and ¢, define range of processes (inclusive), to
which octants from this process may be eventually broad-
casted during remaining communication rounds. There is
no need storing octants that are not destined for processes
within the ¢g, ...

., Ue.

, Je Tange.

Time complexity of this algorithm is not worse than
O(y/p). To be more specific, assuming that no process
uses more than m shared octants and no process con-
tributes to more than m shared octants, for a hypercube
interconnect, the communication complexity of Algorithm
3 is O(tslogp + tym(3,/p — 2)), where t; and t,, are
the latency and the bandwidth constants, respectively. This
bound can be derived as follows.

We have d = logp communication rounds, so the
latency-related cost is t5logp. Now consider any com-
munication round; i.e., fix some ¢ € {d — 1,...,0}.

ALGORITHM 3: REDUCE AND SCATTER

Input: partial upward densities of “shared” octants at
“contributor” processes

Input: r—rank of current process; we assume communicator
size is 2¢

Output: complete upward densities of “shared” octants at
“user” processes

//Define shared octants (for each process):
S ={B € LET : #(Pu(6) N Pc(beta)) > 1}
//Loop over communication rounds (hypercube dimensions)
Fori:=d—1to 0
/[Process s is our partner during this communication round
1. s:=r XOR 2
2. us = s AND (24 — 21)
3. ue = sOR (20 — 1)
4.Send to s : {3 € S:I(B)N(UpQy) # 0}
5. q; = r AND (29 — 27)
6. g = OR (2¢ — 1)
7. Delete { € S : () N (ULQ,) = 0}
/I Reduction
8. Recv from s and append S
9. Remove duplicates for S
10. Sum up densities for duplicate octants.

During this round, the process r with binary representation
r = (bg—1---biy10bj—1---by)2 sends data to process
s =(bg—1--bit11b;—1---bg)2. Note, that if some octant
0 is sent from 7 to s during the round, then two conditions
are met:

e Some process with rank (cg—1---¢i+10b;—1 -+~ bg)2
contributes to 3. That is, the ¢ + 1 least significant
binary digits of some contributor of (5 must be

0,b;_1,- -, by. (Note, there are at most 2¢7*~! such
processes. Thus, at most 29~“~1m, octants have this
property.)

e Some process with rank (bg_1---bi111ci—1 -+ ¢g)2
uses 3. That is, d — ¢ most significant binary digits of
some user of 3 must be bg_1, -+ ,b;+1,1. (At most
2'm octants have this property, similar to previous
condition).

The number of octants satisfying both conditions
is not greater than m - min(2971 2%). Note that
%) min(2%71,2%) < 3,/p— 2. Then the bound easily
follows.

After the three communication steps, all the remaining
steps of Algorithm 1 can be carried out without further
communication.

D. Complexity

We have all the necessary ingredients to derive the
overall complexity of the distributed memory algorithm.
Let n be number of points and let p be number of
processes. We will assume uniform distribution of points
in the unit cube. This, in particular, implies that the
number of octants is proportional to number of points.
The main communication cost is associated with the
parallel sort of the input points. Its time complexity is
O(%log% + plogp) (combination of sample sort and
bitonic sort) [5]. Exchanging the “ghost” octants has
the same complexity as the reduce-broadcast algorithm
described in Section III-C, i.e., O(,/pm), where m is
the maximal number of “shared” octar%t/s?). For a uniform
grid, m can be estimated as (’)(%) . The commu-
nication also includes the exchange of exact densities.
Their cost is of order O(m), since mostly geometrical
neighbors communicate. This cost is negligible compared
to O(,/pm) term. The overall complexity of the setup

2/3
phase is thus O <Z log 2 + plogp + ﬁ(%)) For
the evaluation we have to add up the linear complexity
of local FMM pass and the communication complexity of

. n n 2/3
reduce-broadcast. We end up with O (p + P (5))

In the next section, we consider shared memory ac-
celeration for the S2U,D2T,ULI, and VLI steps using a
streaming architecture.

IV. THE GPU ACCELERATION

Naturally, we should consider shared memory accel-
eration and exploiting single-socket and streaming speed
ups. The S2U,D2T, ULI, WLI, VLI, XLI steps can be
implemented in parallel. Also, the U2U and D2D steps
can be also executed in parallel using Euler tours [9],
but as mentioned in the limitations discussion in the
introduction, our current implementation does not support
such parallelism.

In this section, we give details that are valid only for
the specific FMM we’re using—our kernel independent
method [20]. We accelerate the S2U, VLI, ULI, and D2T
steps. (The U2U and D2D traversals and XLI, WLI remain
sequential.) The basic idea is the following. In all of the
steps that we have accelerated with GPUs, visiting the
octants can be done in an embarrassingly parallel way. The
second observation is that all box visits include box-to-box
or box-to-point interactions that are expressed in terms of
matrix vector multiplications. All the multiplications are
dense with the exception of the VLI calculations, which

correspond to a diagonal translation. This allows a two-
level parallelism: across boxes, and across the rows of the
corresponding matrix.

In the CUDA programming model, there is a two-level
thread hierarchy consisting of (i) individual threads and
(ii) thread blocks [1]. A thread block consists of a group
of b individual threads. Threads within thread block may
explicitly synchronize and communicate via a local-store
memory (‘“shared memory” in CUDA parlance), but two
threads in different thread blocks cannot synchronize or
communicate.

The CUDA model also includes a memory hierarchy,
consisting of a global address space on the GPU that all
threads share, as well as a local-store address space shared
only among threads within a given thread block. When
reading from the global address space, current generation
GPUs strongly favor coalesced memory accesses in which
all threads within a thread block reference contiguous
consecutive memory addresses. For data residing in the
local-store, threads may access data in a random-access
fashion with no penalty.

We sketch the GPU U-List implementation in Algo-
rithm IV. First, we copy the U-List data structure, U,
into a GPU-friendly format in which target boxes are
padded to the next largest multiple of the thread block
size, b. We then assign groups of b target points to thread
blocks and assign individual target points to individual
threads. All threads cooperatively load blocks of b source
points into shared memory, accumulate the potential due
to those source points, and repeat until no source points
remain. The U-List is sparse, meaning that loading source
point data may not always be coalesced, depending on the
number of source points per source box. Since we perform
O(b?) flops for every O(b) loads, we do not expect this
effect to be large for sufficiently large b.

Although our direct computation is similar to the CUDA
reference implementation [1], there are two key differ-
ences. First, we use a sparse adjacency structure (the U-
List, U). Second, we avoid self-interactions not by using a
softening parameter, but by exploiting the IEEE-compliant
implementation of the max(a, b) function available on the
GPU. In particular, in IEEE arithmetic, max(NaN, z) =
max(z,NaN) = z. If the distance between two particles is
0 so that the potential x = oo, then x = x4 (z—z) = NaN
and max(x,0.0) = 0.0. The max function is implemented
efficiently on the GPU, making this trick an effective way
to avoid self-interactions without a conditional test.

The accelerations for the S2M and L2T lists follow a

ALGORITHM 4: GPU_U-LIST

Input: U, s;
Output: f;

1. Assign target box [to some thread block B.
2. Assign each target point ¢; € 3 to some thread p; € B.
3. Transfer U and s from CPU to GPU.
4. Each thread t; executes the following (in parallel):
5. YaelU(B);
/l Bach thread p; loads a different source point s;:
6 Load source point s; € a into B’s shared memory;
7 SynchronizeThreads(B);
8. Vs; € B’s shared memory: f; += K, ; - 55
9
1

/IGPU

SynchronizeThreads(B);
0. Transfer f from to GPU to CPU

similar pattern and in fact are even easier to implement.
The main difference with the U2U list is that, in some
sense, the locations of either the targets (S2M) or the
sources (L2T) are in known regular positions per octant,
and thus they do not need to be read in the memory.
Instead, given the octant level and coordinates (typically,
just one of its vertices) we can produce the coordinates
of the target/source points using information that is per-
manently resident in the shared memory of the blocks.
This minimizes memory fetches and allows for over 50X
speed-up for those phases (over 30 GFlops/s).

The calculation for the V-list is different: in our FMM
scheme, it is diagonal, that is it corresponds to a pointwise
vector-vector multiplication. It is based on a Fast Fourier
Transform-based diagonalization of the T operator. In our
current implementation, the per-octant FFTs are done in
the CPU and the diagonal translation (in the frequency
space) is done in the GPU. This calculation is the least
efficient in the GPU as it the ratio between computation
and memory fetches is small. Our ongoing work includes
transferring the W,X-lists on the GPU.

V. NUMERICAL EXPERIMENTS

In this section, we describe the results from numerical
experiments that demonstrate the scalability of our imple-
mentation across different architectures and for different
problems. Below we summarize the different parameters
in our tests.

Particle distributions. We test two particle distribu-
tions, a wuniform and a nonuniform one. The uniform
corresponds to random sampling with uniform probability

10 10

Fig. 5. Variance of Flops across processes. Left: nonuniform;
Right: uniform Here we see the variability of flops across
processes. On the x-axis we have the process id. Notice
the different scales on the y-axis between the uniform and
nonuniform case.

Event Max. Time | Avg. Time | Max. Flops | Avg. Flops
Total eval 1.37e+02 1.20e+02 5.48e+10 3.72e+10
Upward 3.83e+01 1.85e+01 1.69e+10 7.68e+09
Comm. 8.83e+00 8.83e+00 0.00e+00 0.00e+00
U-list 5.84e+01 2.67e+01 1.61e+10 9.57e+09
V-list 4.73e+01 2.63e+01 2.06e+10 1.15e+10
W-list 1.63e+01 5.47e+00 4.43e+09 2.26e+09
X-list 1.28e+01 5.13e+00 4.25e+09 2.22e+09
Downward 1.89e+01 9.06e+00 8.74e+09 3.97e+09
Comp 1.18e+02 9.11e+01 5.48e+10 3.72e+10

TABLE II

65,536 PROCESSES ON KRAKEN. RESULTS FROM THE TIMING THE
EVALUATION PHASE. In this example, the problem size was
150K points per process. Since we are using the Stokes
kernel with three unknowns per point, a total of 30
billion potentials on TeraGrid/NICS Kraken were
computed. The tree used in this calculation spanned
seven orders of spatial scales (the coarsest leaf is at
level 2 and the finest tree is at level 27). The setup took
27 seconds, 15 of which were spent in the particle sort.
Here, “Max. Time” is maximum wall-clock time across
processes; “Avg. Time” is the wall-clock time averaged
across processes. “Max” and “Avg” are defined
similarly for the “Flops” numbers.

density distribution on the unit cube. The nonuniform
distributions corresponds to a distribution of points on
the surface of an ellipsoid of ration 1:1:4 with uniform
distribution of angle spacing in spherical coordinates.
Machines. The main scalability results have been ob-
tained on TeraGrid’s Kraken at the National Institute of
Computational Sciences (UT/ORNL/NSF), a Cray XT5
system with 66048 cores (2.3 GHz quad-core AMD
opteron, 1/2GB/core) and a 3D-torus topology. Kraken
is the biggest NSF-sponsored machine in production as
of April 2008. The GPU scalability results have been
obtained on TeraGrid’s Lincoln at the National Center for
Supercomputing Applications (UIUC/NSF), a Dell cluster

seconds — seconds
432 Comm I 135
384 ?-H-t Preorder | —] 120 i
- Udlist |0
336 — 105 LLL
Vlist [+
288 | i 90 ||
- W-list]
240 | [° 75
i o)
02 | Y X L o [T
144 ; i Postorder |ccit 45 L,:
S Other -
96 I—] % Comm 30 — g
r777 ?I«-
ag [- LETsot P21 s = -~
0 H — ey : g LET:Ghosts |77/ = 555 % Q
‘ np 2777 0 4=_ N np
512 1024 2048 4096 8192 LET:Other . 512 1024 2048 4096 8192
(a) uniform (b) ellipse
Fig. 3. Strong scaling on Kraken. The left figure shows the results for the uniform particle distribution. The right figure

shows the results for the nonuniform distribution. In the first case, the problem size is kept fixed to 200M points, and
in the second to 100M points. We report average (across processes) wall-clock times for the different FMM setup and
evaluation phases using the bars; the black dots denote maximum time across all processes and they correspond to

the overall wall-clock time.

seconds - — seconds
Density comm. [::::
45 o 90 ®
40 L Upward = g b
35 U list ::[70 . ° ! .
| V list i
30 60 | e W
s A& BHOHE W-list % ﬁ S
1 - =
=l - X list] i A
20 10] 1] 40 [™ [T ™
15 A o ','=:I na - Doz)vtr}llvevrard 5 I s =
10 :I :r_ o o . comm/sync 20
5 : NP LETsort 7777 TR EIENEE=
=l==R= LET:ghosts |77 === 7
0 ! 2, ny, 0 4___!4.:;!45! AL n,
16 128 1024 8192 65536 LET:other . 16 128 1024 8192 65536

(a) uniform

(b) ellipse

Fig. 4. Weak scaling on Kraken. For the uniform case we use 25K points per process and for the nonuniform case in the
right, we use 100k per process. Unlike our SC’03 algorithms and implementation, now the tree construction takes

only a small part of the overall computation.

with NVIDIA Tesla S1070 accelerators, 1536 cores(Intel
Harpertown/2.33 Ghz dual-socket quad-core 2GB/core),
384 GPUs (4GB/GPU), and InfiniBand (SDR) intercon-
nect.

Implementations and libraries. The code is written in
C++ and the accelerator modules in CUDA. We use the
PETSc [3] for profiling and certain parts of communica-
tion, and the DENDRO [13] package for sorting and linear
octree construction. The current implementation is based
on our past implementation [19]. The new version will be

10

released under GPL in the near future.

Kernels: We used the Stokes single-layer kernel for
the examples on Kraken. This is a vector potential, which
has three unknowns per grid point. For the GPU results,
we used the Laplacian kernel, which is a scalar potential.
The former is related to our target applications (fluid
mechanics). The latter is less computation intensive and
it is a good test for the GPU accelerator. For more details
on the kernels, see [20].

q 30 | 244 | 1953

Total evaluation | 5.13 | 1.17 | 2.15

Upward Pass | 0.58 | 0.13 | 0.07

U list 0291 045| 1.9

V list 376 | 0.44 | 0.06

Downward Pass | 0.35 | 0.1 | 0.07
TABLE III

SINGLE GPU. Here we experimentally study the effect of

varying the points-per-box q on the GPU performance.

By varying this number, we can study the effects of the

relative size of V and U-lists on the overall computation
time.

MPI strong scalability tests on Kraken. The strong
scalability results are reported in Figure 3. The bars
indicate the average time spent in the different phases
and the black dot indicates the overall wall-clock time
(equal to the maximum across processes) for the setup and
evaluation phases. The problem size is 200M unknowns
for the uniform case and 100M unknowns for the nonuni-
form case for a range of 512-8K processes. In both cases
we observe excellent speed-up with efficiencies between
80%-90% and with very good load balance (note the small
difference between the black dot, which is the maximum
time across processes and the average timings, which are
denoted in the bars).

MPI weak scalability tests on Kraken. The weak
scalability results are reported in Figure 4. The problem
size (number of input points) per core is kept fixed to
100K points for the nonuniform case and 25K points
for the uniform case. The observed increase in timings
(1.5x increase as we go from 16 to 64k cores) is due
to three reasons: theoretical complexity, load imbalance,
and the heterogeneity of processes (on Kraken, half of the
cores have 1GB and the other half has 2GB). In figure
5, we report the total flops per core for the 64K-core
run for the uniform and nonuniform distributions. Overall,
however, the timings are excellent—ranging from 25-45
secs for 512-64K cores for the uniform case, to 60-90
secs for the nonuniform case for the same range of cores.
In Table II, we report the exact timings for each phase for
a nonuniform distribution problem with 150K particles per
core for a total of 30 billion unknowns.

GPU single-core speed-up on Lincoln. We report these
results in Table III. We study the effect of the points per
box on the GPU performance. We consider 1M points for
the uniform case. We can see the optimal value of points
per box that can be used in a production run. This tests

seconds -
X

70 | 39x 25X 35x
63 | — M@ H
56 ||
49
42 7] _ Density comm.
5 1] Upward
28 | 3 — 5 U list

) o V list
21] o

o m Downward
14] N
- I
0) - 2 27 o Y — ’I’Lp

4 8 32 64 256

Fig. 6. GPU weak scaling. Here we compare CPU-only with
GPU/CPU configuration on up to 256 processes. For the
largest run the total evaluation on 256 million points takes
2.2 secs (we did not run a CPU only example for the
largest case). Throughout the computation, we maintain
a 25X speed-up over a CPU-only implementation. For
the GPU runs, we use a shallower tree by allowing a
higher number of points per box. In this way, we favor
ULI over VLI computations. The former has a favorable
computation/memory communication ratio and performs
favorably on a GPU. In this examples, we used roughly
400 points per box for the GPU runs, and 100 points per
box for the CPU runs. Both numbers were optimized for
their respective architectures. We were able to maintain a
1.8-3 secs / evaluation for the GPU-based implementation.

resembles the tuning phase and can be part of an auto-
tuning algorithm.

GPU weak scalability results on Lincoln. We report
these results in Figure 6. We only report results for the
uniform distribution using one million points per GPU.
We use one socket per MPI process and one GPU per
socket. Each socket has 4 cores, but at this point we are
not using them. The results on GPUs are excellent on
up to 256 processes/GPUs. We get over a 25X speedup
(compared to CPU-only run) consistently and we were
able to evaluate a 256-million particle sum in 2.3 seconds,
which corresponds to approximately 8 TFlops/s.

VI. DISCUSSION AND CONCLUSIONS

We have presented several algorithms that taken to-
gether expose and exploit concurrency at all stages of
the fast multipole algorithms and employ several parallel
programming paradigms. We showed that we efficiently
scale the tree-setup with the major cost being the parallel
sort, which in turn exhibits textbook scalability. We de-

11

scribe a new reduction scheme for the FMM algorithm
and we demonstrate overall scalability. We explored per-
core concurrency using the streaming paradigm on GPU
accelerators with excellent speed-ups. FMM is a highly
non-trivial algorithm with several different phases, a com-
bination of multiresolution data structures, fast transforms,
and highly irregular data access. Despite these obstacles,
we were able to achieve significant speed-ups.

The single core CPU performance for the evaluation
part is roughly 500 MFlops/s. On our largest calculation
on 64K cores on Kraken we roughly get (Table II) 260
MFlops/s. So overall, we loose 50% of science flops as we
scale. Even with this loss, our present code could achieve
one PetaFlop/s on a hypothetical 64K-GPU/CPU machine
without any further modifications.

Further acceleration is possible, by introducing mul-
ticore multithreading for the CPU-to-GPU data trans-
formations, the acceleration of the setup phase using
GPU-accelerated sorting and tree construction, and using
GPUs/OpenMP for the upward and downward computa-
tions.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. National
Science Foundation (NSF) grants CNS-0929947, CCF-
0833136, OCI-0749285, OCI-0749334, and a grant from
the U.S. Defense Advanced Research Projects Agency
(DARPA). Any opinions, findings and conclusions or
recommendations expressed in this material are those of
the authors and do not necessarily reflect those of NSF
or DARPA. Computing resources on the TeraGrid sys-
tems were provided under the TeraGrid allocation grants
ASCO070050N, CCR090024, and MCA04N026. We would
like to thank the TeraGrid support staff, and also the staff
and consultants at NCSA, PSC, TACC, and NICS from
whom we have received significant assistance.

REFERENCES
[1] NVIDIA CUDA (Compute Unified Device Architecture): Pro-
gramming Guide, Version 2.1, December 2008.
P. AIMERA, R. GORADIA, S. CHANDRAN, AND S. ALURU,
Fast, parallel, gpu-based construction of space filling curves and
octrees, in 13D ’08: Proceedings of the 2008 symposium on
Interactive 3D graphics and games, ACM, 2008, pp. 1-1.
S. BALAY, K. BUSCHELMAN, W. D. GRoprp, D. KAUSHIK,
M. KNEPLEY, L. C. MCINNES, B. F. SMITH, AND H. ZHANG,
PETSc home page, 2001. http://www.mcs.anl.gov/petsc.
H. CHENG, L. GREENGARD, AND V. ROKHLIN, A fast adaptive
multipole algorithm in three dimensions, Journal of Computa-
tional Physics, 155 (1999), pp. 468-498.

(2]

(3]

(4]

12

(5]

(6]

(71

(8]

(9]

(10]

(11]

[12]

(13]

[14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

A. GRAMA, A. GUPTA, G. KARYPIS, AND V. KUMAR, An
Introduction to Parallel Computing: Design and Analysis of
Algorithms, Addison Wesley, second ed., 2003.

L. GREENGARD AND V. ROKHLIN, A fast algorithm for par-
ticle simulations, Journal of Computational Physics, 73 (1987),
pp. 325-348.

N. A. GUMEROV AND R. DURAISWAMI, Fast multipole methods
on graphics processors, Journal of Computational Physics, 227
(2008), pp. 8290 — 8313.

B. HARIHARAN AND S. ALURU, Efficient parallel algorithms
and software for compressed octrees with applications to hierar-
chical methods, Parallel Computing, 31 (2005), pp. 311 — 331.
J.JAY’ A, An introduction to parallel algorithms, Addison Wesley,
1992.

J. KURZAK AND B. M. PETTITT, Massively parallel implementa-
tion of a fast multipole method for distributed memory machines,
Journal of Parallel and Distributed Computing, 65 (2005), pp. 870
— 881.

S. OGATA, T. J. CAMPBELL, R. K. KALIA, A. NAKANO,
P. VASHISHTA, AND S. VEMPARALA, Scalable and portable im-
plementation of the fast multipole method on parallel computers,
Computer Physics Communications, 153 (2003), pp. 445 — 461.
J. C. PHILLIPS, J. E. STONE, AND K. SCHULTEN, Adapting a
message-driven parallel application to GPU-accelerated clusters,
in SC’08: Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, 2008, pp. 1-9.

R. SAMPATH, S. S. ADAVANI, H. SUNDAR, I. LASHUK, AND
G. BIROS, DENDRO home page, 2008.

R. S. SAMPATH, S. S. ADAVANI, H. SUNDAR, I. LASHUK, AND
G. BIROS, Dendro: parallel algorithms for multigrid and AMR
methods on 2:1 balanced octrees, in SC ’08: Proceedings of the
2008 ACM/IEEE conference on Supercomputing, Piscataway, NJ,
USA, 2008, IEEE Press, pp. 1-12.

F. E. SEVILGEN AND S. ALURU, A unifying data structure
for hierarchical methods, in Proceedings of Supercomputing,
The SCxy Conference series, Portland, Oregon, November 1999,
ACM/IEEE.

H. SUNDAR, R. S. SAMPATH, AND G. BIROS, Bottom-up con-
struction and 2:1 balance refinement of linear octrees in parallel,
SIAM Journal on Scientific Computing, 30 (2008), pp. 2675—
2708.

S.-H. TENG, Provably good partitioning and load balancing al-
gorithms for parallel adaptive N-body simulation, STAM Journal
on Scientific Computing, 19 (1998).

M. S. WARREN AND J. K. SALMON, A parallel hashed oct-
tree N-body algorithm, in Proceedings of Supercomputing, The
SCxy Conference series, Portland, Oregon, November 1993,
ACM/IEEE.

L. YING, G. BIROS, H. LANGSTON, AND D. ZORIN, KIFMM3D:
The kernel-independent fast multipole (FMM) 3D code. GPL
license.

L. YING, G. BIROS, AND D. ZORIN, A kernel-independent
adaptive fast multipole method in two and three dimensions,
Journal of Computational Physics, 196 (2004), pp. 591-626.

L. YING, G. BIROS, D. ZORIN, AND H. LANGSTON, A new
parallel kernel-independent fast multipole algorithm, in Proceed-
ings of SC03, The SCxy Conference series, Phoenix, Arizona,
November 2003, ACM/IEEE.

	Introduction
	High-level description of the fast multipole algorithm
	Parallelizing the evaluation phase

	Distributed memory parallelism
	Tree construction
	Load balancing
	FMM evaluation
	Complexity

	The GPU acceleration
	Numerical Experiments
	Discussion and conclusions
	References

